Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972732442> ?p ?o ?g. }
- W2972732442 endingPage "2306" @default.
- W2972732442 startingPage "2298" @default.
- W2972732442 abstract "To develop and validate a novel, machine learning-derived model to predict the risk of heart failure (HF) among patients with type 2 diabetes mellitus (T2DM).Using data from 8,756 patients free at baseline of HF, with <10% missing data, and enrolled in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, we used random survival forest (RSF) methods, a nonparametric decision tree machine learning approach, to identify predictors of incident HF. The RSF model was externally validated in a cohort of individuals with T2DM using the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT).Over a median follow-up of 4.9 years, 319 patients (3.6%) developed incident HF. The RSF models demonstrated better discrimination than the best performing Cox-based method (C-index 0.77 [95% CI 0.75-0.80] vs. 0.73 [0.70-0.76] respectively) and had acceptable calibration (Hosmer-Lemeshow statistic χ2 = 9.63, P = 0.29) in the internal validation data set. From the identified predictors, an integer-based risk score for 5-year HF incidence was created: the WATCH-DM (Weight [BMI], Age, hyperTension, Creatinine, HDL-C, Diabetes control [fasting plasma glucose], QRS Duration, MI, and CABG) risk score. Each 1-unit increment in the risk score was associated with a 24% higher relative risk of HF within 5 years. The cumulative 5-year incidence of HF increased in a graded fashion from 1.1% in quintile 1 (WATCH-DM score ≤7) to 17.4% in quintile 5 (WATCH-DM score ≥14). In the external validation cohort, the RSF-based risk prediction model and the WATCH-DM risk score performed well with good discrimination (C-index = 0.74 and 0.70, respectively), acceptable calibration (P ≥0.20 for both), and broad risk stratification (5-year HF risk range from 2.5 to 18.7% across quintiles 1-5).We developed and validated a novel, machine learning-derived risk score that integrates readily available clinical, laboratory, and electrocardiographic variables to predict the risk of HF among outpatients with T2DM." @default.
- W2972732442 created "2019-09-19" @default.
- W2972732442 creator A5007166261 @default.
- W2972732442 creator A5022314919 @default.
- W2972732442 creator A5022544815 @default.
- W2972732442 creator A5024092394 @default.
- W2972732442 creator A5024931198 @default.
- W2972732442 creator A5025632184 @default.
- W2972732442 creator A5031865292 @default.
- W2972732442 creator A5033269110 @default.
- W2972732442 creator A5037939005 @default.
- W2972732442 creator A5054712953 @default.
- W2972732442 creator A5061881316 @default.
- W2972732442 creator A5070928171 @default.
- W2972732442 creator A5071945904 @default.
- W2972732442 date "2019-09-13" @default.
- W2972732442 modified "2023-10-15" @default.
- W2972732442 title "Machine Learning to Predict the Risk of Incident Heart Failure Hospitalization Among Patients With Diabetes: The WATCH-DM Risk Score" @default.
- W2972732442 cites W172609984 @default.
- W2972732442 cites W1813115710 @default.
- W2972732442 cites W1981036651 @default.
- W2972732442 cites W1992557526 @default.
- W2972732442 cites W2008035769 @default.
- W2972732442 cites W2020628257 @default.
- W2972732442 cites W2064186732 @default.
- W2972732442 cites W2070439734 @default.
- W2972732442 cites W2070746484 @default.
- W2972732442 cites W2102312517 @default.
- W2972732442 cites W2136145230 @default.
- W2972732442 cites W2146264128 @default.
- W2972732442 cites W2328176404 @default.
- W2972732442 cites W2407438980 @default.
- W2972732442 cites W2407717047 @default.
- W2972732442 cites W2525418677 @default.
- W2972732442 cites W2562329777 @default.
- W2972732442 cites W2626446274 @default.
- W2972732442 cites W2760952310 @default.
- W2972732442 cites W2790767749 @default.
- W2972732442 cites W2811425937 @default.
- W2972732442 cites W2887185538 @default.
- W2972732442 cites W2894993577 @default.
- W2972732442 cites W2900102850 @default.
- W2972732442 cites W2900413769 @default.
- W2972732442 cites W2902527999 @default.
- W2972732442 cites W2903130798 @default.
- W2972732442 cites W2939222610 @default.
- W2972732442 cites W2942881797 @default.
- W2972732442 cites W2945964784 @default.
- W2972732442 cites W2980621767 @default.
- W2972732442 cites W3099478002 @default.
- W2972732442 cites W4238907867 @default.
- W2972732442 cites W4256525495 @default.
- W2972732442 doi "https://doi.org/10.2337/dc19-0587" @default.
- W2972732442 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7364669" @default.
- W2972732442 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31519694" @default.
- W2972732442 hasPublicationYear "2019" @default.
- W2972732442 type Work @default.
- W2972732442 sameAs 2972732442 @default.
- W2972732442 citedByCount "146" @default.
- W2972732442 countsByYear W29727324422020 @default.
- W2972732442 countsByYear W29727324422021 @default.
- W2972732442 countsByYear W29727324422022 @default.
- W2972732442 countsByYear W29727324422023 @default.
- W2972732442 crossrefType "journal-article" @default.
- W2972732442 hasAuthorship W2972732442A5007166261 @default.
- W2972732442 hasAuthorship W2972732442A5022314919 @default.
- W2972732442 hasAuthorship W2972732442A5022544815 @default.
- W2972732442 hasAuthorship W2972732442A5024092394 @default.
- W2972732442 hasAuthorship W2972732442A5024931198 @default.
- W2972732442 hasAuthorship W2972732442A5025632184 @default.
- W2972732442 hasAuthorship W2972732442A5031865292 @default.
- W2972732442 hasAuthorship W2972732442A5033269110 @default.
- W2972732442 hasAuthorship W2972732442A5037939005 @default.
- W2972732442 hasAuthorship W2972732442A5054712953 @default.
- W2972732442 hasAuthorship W2972732442A5061881316 @default.
- W2972732442 hasAuthorship W2972732442A5070928171 @default.
- W2972732442 hasAuthorship W2972732442A5071945904 @default.
- W2972732442 hasBestOaLocation W29727324421 @default.
- W2972732442 hasConcept C11783203 @default.
- W2972732442 hasConcept C120665830 @default.
- W2972732442 hasConcept C121332964 @default.
- W2972732442 hasConcept C126322002 @default.
- W2972732442 hasConcept C134018914 @default.
- W2972732442 hasConcept C2778198053 @default.
- W2972732442 hasConcept C2779134260 @default.
- W2972732442 hasConcept C50382708 @default.
- W2972732442 hasConcept C555293320 @default.
- W2972732442 hasConcept C61511704 @default.
- W2972732442 hasConcept C71924100 @default.
- W2972732442 hasConcept C72563966 @default.
- W2972732442 hasConcept C88879693 @default.
- W2972732442 hasConceptScore W2972732442C11783203 @default.
- W2972732442 hasConceptScore W2972732442C120665830 @default.
- W2972732442 hasConceptScore W2972732442C121332964 @default.
- W2972732442 hasConceptScore W2972732442C126322002 @default.
- W2972732442 hasConceptScore W2972732442C134018914 @default.
- W2972732442 hasConceptScore W2972732442C2778198053 @default.
- W2972732442 hasConceptScore W2972732442C2779134260 @default.