Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972745527> ?p ?o ?g. }
- W2972745527 abstract "Learning representations that accurately capture long-range dependencies in sequential inputs -- including text, audio, and genomic data -- is a key problem in deep learning. Feed-forward convolutional models capture only feature interactions within finite receptive fields while recurrent architectures can be slow and difficult to train due to vanishing gradients. Here, we propose Temporal Feature-Wise Linear Modulation (TFiLM) -- a novel architectural component inspired by adaptive batch normalization and its extensions -- that uses a recurrent neural network to alter the activations of a convolutional model. This approach expands the receptive field of convolutional sequence models with minimal computational overhead. Empirically, we find that TFiLM significantly improves the learning speed and accuracy of feed-forward neural networks on a range of generative and discriminative learning tasks, including text classification and audio super-resolution" @default.
- W2972745527 created "2019-09-19" @default.
- W2972745527 creator A5021338648 @default.
- W2972745527 creator A5026964779 @default.
- W2972745527 creator A5036598796 @default.
- W2972745527 creator A5079904764 @default.
- W2972745527 creator A5091179481 @default.
- W2972745527 date "2019-09-14" @default.
- W2972745527 modified "2023-09-27" @default.
- W2972745527 title "Temporal FiLM: Capturing Long-Range Sequence Dependencies with Feature-Wise Modulations" @default.
- W2972745527 cites W1019830208 @default.
- W2972745527 cites W1560739766 @default.
- W2972745527 cites W182831726 @default.
- W2972745527 cites W1832693441 @default.
- W2972745527 cites W1885185971 @default.
- W2972745527 cites W1989337816 @default.
- W2972745527 cites W2019251848 @default.
- W2972745527 cites W2023342647 @default.
- W2972745527 cites W2036815225 @default.
- W2972745527 cites W2064675550 @default.
- W2972745527 cites W2076154138 @default.
- W2972745527 cites W2107878631 @default.
- W2972745527 cites W2110485445 @default.
- W2972745527 cites W2113459411 @default.
- W2972745527 cites W2130942839 @default.
- W2972745527 cites W2134017361 @default.
- W2972745527 cites W2135567392 @default.
- W2972745527 cites W2147152002 @default.
- W2972745527 cites W2160815625 @default.
- W2972745527 cites W2185589732 @default.
- W2972745527 cites W2250539671 @default.
- W2972745527 cites W2290318471 @default.
- W2972745527 cites W2308367698 @default.
- W2972745527 cites W2326925005 @default.
- W2972745527 cites W2399742709 @default.
- W2972745527 cites W2413904250 @default.
- W2972745527 cites W2476548250 @default.
- W2972745527 cites W2523714292 @default.
- W2972745527 cites W2535388113 @default.
- W2972745527 cites W2545656684 @default.
- W2972745527 cites W2584032004 @default.
- W2972745527 cites W2593887162 @default.
- W2972745527 cites W2613904329 @default.
- W2972745527 cites W2737615485 @default.
- W2972745527 cites W2740721704 @default.
- W2972745527 cites W2808133401 @default.
- W2972745527 cites W2896457183 @default.
- W2972745527 cites W2944438111 @default.
- W2972745527 cites W2945824677 @default.
- W2972745527 cites W2949117887 @default.
- W2972745527 cites W2949382160 @default.
- W2972745527 cites W2950813464 @default.
- W2972745527 cites W2951572348 @default.
- W2972745527 cites W2951697117 @default.
- W2972745527 cites W2963073614 @default.
- W2972745527 cites W2963344337 @default.
- W2972745527 cites W2963840672 @default.
- W2972745527 cites W2963921132 @default.
- W2972745527 hasPublicationYear "2019" @default.
- W2972745527 type Work @default.
- W2972745527 sameAs 2972745527 @default.
- W2972745527 citedByCount "2" @default.
- W2972745527 countsByYear W29727455272021 @default.
- W2972745527 crossrefType "posted-content" @default.
- W2972745527 hasAuthorship W2972745527A5021338648 @default.
- W2972745527 hasAuthorship W2972745527A5026964779 @default.
- W2972745527 hasAuthorship W2972745527A5036598796 @default.
- W2972745527 hasAuthorship W2972745527A5079904764 @default.
- W2972745527 hasAuthorship W2972745527A5091179481 @default.
- W2972745527 hasConcept C108583219 @default.
- W2972745527 hasConcept C111919701 @default.
- W2972745527 hasConcept C136886441 @default.
- W2972745527 hasConcept C138885662 @default.
- W2972745527 hasConcept C144024400 @default.
- W2972745527 hasConcept C147168706 @default.
- W2972745527 hasConcept C150899416 @default.
- W2972745527 hasConcept C153180895 @default.
- W2972745527 hasConcept C154945302 @default.
- W2972745527 hasConcept C167966045 @default.
- W2972745527 hasConcept C19165224 @default.
- W2972745527 hasConcept C2776401178 @default.
- W2972745527 hasConcept C2778112365 @default.
- W2972745527 hasConcept C2779960059 @default.
- W2972745527 hasConcept C39890363 @default.
- W2972745527 hasConcept C40506919 @default.
- W2972745527 hasConcept C41008148 @default.
- W2972745527 hasConcept C41895202 @default.
- W2972745527 hasConcept C50644808 @default.
- W2972745527 hasConcept C54355233 @default.
- W2972745527 hasConcept C59404180 @default.
- W2972745527 hasConcept C81363708 @default.
- W2972745527 hasConcept C86803240 @default.
- W2972745527 hasConcept C97931131 @default.
- W2972745527 hasConceptScore W2972745527C108583219 @default.
- W2972745527 hasConceptScore W2972745527C111919701 @default.
- W2972745527 hasConceptScore W2972745527C136886441 @default.
- W2972745527 hasConceptScore W2972745527C138885662 @default.
- W2972745527 hasConceptScore W2972745527C144024400 @default.
- W2972745527 hasConceptScore W2972745527C147168706 @default.
- W2972745527 hasConceptScore W2972745527C150899416 @default.