Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972765272> ?p ?o ?g. }
- W2972765272 endingPage "113651" @default.
- W2972765272 startingPage "113651" @default.
- W2972765272 abstract "The detrimental impact of urban airborne Hg0 from fossil fuel utilization has necessitated the discovery and development of Hg0 sensing materials for effective Hg0 detection and mitigation of the pollutant. Earlier studies have hypothetically and experimentally supported 2-dimensional transition-metal dichalcogenides (2D TMDCs), particularly MoS2 to have excellent performance for Hg0 removal. However, the potential of other TMDCs is yet to be investigated for Hg0 sensor application. In this study, a total of 28 transition metals within periods 4–6 of the periodic table, excluding the lanthanides series, were examined. To ensure proper data management flow, a high-throughput data mining approach with integrated machine learning and cheminformatics simulation approaches is developed. The systemic approach integrates the Pymatgen, Factsage, Aflow and density functional theory simulation tools for accelerated discovery of suitable TMDCs from raw data via the chemical vapour reaction route. Predicted results showed that TiS2, NiS2, ZrS2, MoS2, PdS2 and WS2 exhibited TMDCs characteristics. Furthermore, first-principles calculation shows Hg-uptake capacity is in the order NiS2 > PdS2 > TiS2 > ZrS2 > WS2 > MoS2, while Hg sensing response is in the order PdS2 > MoS2 > WS2 > ZrS2 > NiS2 > TiS2. Accordingly, PdS2 depicted to be the most suitable TMDCs for airborne Hg0 sensor application. The proposed systemic approach is an initial platform for materials discovery using integrated machine learning approaches and is well-suited for the screening and the discovery of new materials based on component-oriented structures." @default.
- W2972765272 created "2019-09-19" @default.
- W2972765272 creator A5008718579 @default.
- W2972765272 creator A5013117145 @default.
- W2972765272 creator A5043100976 @default.
- W2972765272 creator A5051935973 @default.
- W2972765272 creator A5080884747 @default.
- W2972765272 creator A5081145014 @default.
- W2972765272 creator A5083617730 @default.
- W2972765272 creator A5090395315 @default.
- W2972765272 date "2019-11-01" @default.
- W2972765272 modified "2023-10-12" @default.
- W2972765272 title "Integration of machine learning approaches for accelerated discovery of transition-metal dichalcogenides as Hg0 sensing materials" @default.
- W2972765272 cites W1973166400 @default.
- W2972765272 cites W2027670643 @default.
- W2972765272 cites W2117363206 @default.
- W2972765272 cites W2202382101 @default.
- W2972765272 cites W2324964582 @default.
- W2972765272 cites W2328708083 @default.
- W2972765272 cites W2335912464 @default.
- W2972765272 cites W2419226913 @default.
- W2972765272 cites W2437723254 @default.
- W2972765272 cites W2460830467 @default.
- W2972765272 cites W2482506383 @default.
- W2972765272 cites W2508967951 @default.
- W2972765272 cites W2571032542 @default.
- W2972765272 cites W2606363443 @default.
- W2972765272 cites W2606803425 @default.
- W2972765272 cites W2607056031 @default.
- W2972765272 cites W2617904777 @default.
- W2972765272 cites W2618590689 @default.
- W2972765272 cites W2622148298 @default.
- W2972765272 cites W2622165831 @default.
- W2972765272 cites W2734899673 @default.
- W2972765272 cites W2735251347 @default.
- W2972765272 cites W2738062132 @default.
- W2972765272 cites W2747592475 @default.
- W2972765272 cites W2767608404 @default.
- W2972765272 cites W2778221222 @default.
- W2972765272 cites W2785942661 @default.
- W2972765272 cites W2791708948 @default.
- W2972765272 cites W2796265311 @default.
- W2972765272 cites W2800946844 @default.
- W2972765272 cites W2801821709 @default.
- W2972765272 cites W2802180511 @default.
- W2972765272 cites W2803396148 @default.
- W2972765272 cites W2808135796 @default.
- W2972765272 cites W2808873021 @default.
- W2972765272 cites W2884490557 @default.
- W2972765272 cites W2886156228 @default.
- W2972765272 cites W2895117537 @default.
- W2972765272 cites W2900250975 @default.
- W2972765272 cites W2900477356 @default.
- W2972765272 cites W2902828964 @default.
- W2972765272 cites W2906269708 @default.
- W2972765272 cites W2910382761 @default.
- W2972765272 cites W2910648456 @default.
- W2972765272 cites W2911133971 @default.
- W2972765272 cites W2912397543 @default.
- W2972765272 cites W2913831809 @default.
- W2972765272 cites W2948516417 @default.
- W2972765272 cites W2964015639 @default.
- W2972765272 doi "https://doi.org/10.1016/j.apenergy.2019.113651" @default.
- W2972765272 hasPublicationYear "2019" @default.
- W2972765272 type Work @default.
- W2972765272 sameAs 2972765272 @default.
- W2972765272 citedByCount "18" @default.
- W2972765272 countsByYear W29727652722020 @default.
- W2972765272 countsByYear W29727652722021 @default.
- W2972765272 countsByYear W29727652722022 @default.
- W2972765272 countsByYear W29727652722023 @default.
- W2972765272 crossrefType "journal-article" @default.
- W2972765272 hasAuthorship W2972765272A5008718579 @default.
- W2972765272 hasAuthorship W2972765272A5013117145 @default.
- W2972765272 hasAuthorship W2972765272A5043100976 @default.
- W2972765272 hasAuthorship W2972765272A5051935973 @default.
- W2972765272 hasAuthorship W2972765272A5080884747 @default.
- W2972765272 hasAuthorship W2972765272A5081145014 @default.
- W2972765272 hasAuthorship W2972765272A5083617730 @default.
- W2972765272 hasAuthorship W2972765272A5090395315 @default.
- W2972765272 hasConcept C106773901 @default.
- W2972765272 hasConcept C127413603 @default.
- W2972765272 hasConcept C161790260 @default.
- W2972765272 hasConcept C171250308 @default.
- W2972765272 hasConcept C185592680 @default.
- W2972765272 hasConcept C192562407 @default.
- W2972765272 hasConcept C21880701 @default.
- W2972765272 hasConcept C39432304 @default.
- W2972765272 hasConcept C41008148 @default.
- W2972765272 hasConcept C55493867 @default.
- W2972765272 hasConceptScore W2972765272C106773901 @default.
- W2972765272 hasConceptScore W2972765272C127413603 @default.
- W2972765272 hasConceptScore W2972765272C161790260 @default.
- W2972765272 hasConceptScore W2972765272C171250308 @default.
- W2972765272 hasConceptScore W2972765272C185592680 @default.
- W2972765272 hasConceptScore W2972765272C192562407 @default.
- W2972765272 hasConceptScore W2972765272C21880701 @default.
- W2972765272 hasConceptScore W2972765272C39432304 @default.