Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972771548> ?p ?o ?g. }
- W2972771548 endingPage "116072" @default.
- W2972771548 startingPage "116072" @default.
- W2972771548 abstract "Abstract Flapping wing devices represent a new type of renewable energy extraction technology that has the advantageous characteristics of simple structure, strong adaptability to surroundings, and little impact on the environment. This study numerically investigates the effects of vertical and elliptical airfoil trajectories on the power extraction efficiency of a flapping airfoil device using a transient numerical method based on the overset grid technique. The results are employed to propose a novel reversed-D airfoil trajectory that represents a composite of an elliptical trajectory in the first half of the motion cycle and a standard vertical trajectory in the second half of the motion cycle. The results show that for the elliptical trajectory, when the length of the half-axis in the vertical direction is fixed, the total power harvesting efficiency decreases with the increase of the horizontal half-axis length. In a certain frequency range, the decreased orders of the power extraction ability of the flapping wing are the upstream half-cycle elliptical trajectory, the vertical linear and the downstream half-cycle elliptical trajectory. Based on this understanding, we propose a new type of reversed-D motion trajectory. The power extraction efficiency of flapping wing devices operating in the reversed-D trajectory are investigated using both single and double airfoil designs. The results show that the power extraction efficiency of the single airfoil design moving along the reversed-D trajectory is greater than that obtained for the single airfoil moving along the standard vertical reciprocating trajectory within a specific range of frequency, and the increase is due mainly to an increase in the heave force. The power extraction efficiency of each airfoil in the double airfoil model moving along the reversed-D trajectory is less than that of a single airfoil moving along the vertical trajectory. However, the overall average power extraction efficiency is greater than that of a single airfoil moving along the vertical trajectory, and this increased efficiency is obtained over a larger frequency range than that of a single airfoil moving along the reversed-D trajectory. In addition, the increased efficiency of the double airfoil model is greater in the low frequency region. The proposed reversed-D trajectory facilitates the flexible arrangement of multiple airfoils in a flapping wing design. As such, the proposed reversed-D trajectory provides a promising new methodology for designing flapping wing devices with high power extraction efficiencies." @default.
- W2972771548 created "2019-09-19" @default.
- W2972771548 creator A5034883111 @default.
- W2972771548 creator A5075330503 @default.
- W2972771548 creator A5076699095 @default.
- W2972771548 date "2019-12-01" @default.
- W2972771548 modified "2023-10-17" @default.
- W2972771548 title "New type of motion trajectory for increasing the power extraction efficiency of flapping wing devices" @default.
- W2972771548 cites W1085019046 @default.
- W2972771548 cites W1879712375 @default.
- W2972771548 cites W1913216043 @default.
- W2972771548 cites W1979862796 @default.
- W2972771548 cites W1989290367 @default.
- W2972771548 cites W1989762812 @default.
- W2972771548 cites W1993955174 @default.
- W2972771548 cites W2010194258 @default.
- W2972771548 cites W2036000326 @default.
- W2972771548 cites W2040590085 @default.
- W2972771548 cites W2042267991 @default.
- W2972771548 cites W2055855280 @default.
- W2972771548 cites W2182320626 @default.
- W2972771548 cites W2224004388 @default.
- W2972771548 cites W2288664042 @default.
- W2972771548 cites W2312773014 @default.
- W2972771548 cites W2487808888 @default.
- W2972771548 cites W2522865571 @default.
- W2972771548 cites W2626426238 @default.
- W2972771548 cites W2736282575 @default.
- W2972771548 cites W2765847345 @default.
- W2972771548 cites W2791665579 @default.
- W2972771548 cites W2794119165 @default.
- W2972771548 cites W2795081129 @default.
- W2972771548 cites W2806895757 @default.
- W2972771548 cites W2886015214 @default.
- W2972771548 cites W2921793041 @default.
- W2972771548 cites W2943594875 @default.
- W2972771548 cites W4232086187 @default.
- W2972771548 cites W627554728 @default.
- W2972771548 doi "https://doi.org/10.1016/j.energy.2019.116072" @default.
- W2972771548 hasPublicationYear "2019" @default.
- W2972771548 type Work @default.
- W2972771548 sameAs 2972771548 @default.
- W2972771548 citedByCount "15" @default.
- W2972771548 countsByYear W29727715482020 @default.
- W2972771548 countsByYear W29727715482021 @default.
- W2972771548 countsByYear W29727715482022 @default.
- W2972771548 countsByYear W29727715482023 @default.
- W2972771548 crossrefType "journal-article" @default.
- W2972771548 hasAuthorship W2972771548A5034883111 @default.
- W2972771548 hasAuthorship W2972771548A5075330503 @default.
- W2972771548 hasAuthorship W2972771548A5076699095 @default.
- W2972771548 hasConcept C104114177 @default.
- W2972771548 hasConcept C121332964 @default.
- W2972771548 hasConcept C127413603 @default.
- W2972771548 hasConcept C1276947 @default.
- W2972771548 hasConcept C13662910 @default.
- W2972771548 hasConcept C146978453 @default.
- W2972771548 hasConcept C154945302 @default.
- W2972771548 hasConcept C163258240 @default.
- W2972771548 hasConcept C171146098 @default.
- W2972771548 hasConcept C185592680 @default.
- W2972771548 hasConcept C2775924081 @default.
- W2972771548 hasConcept C2780444116 @default.
- W2972771548 hasConcept C41008148 @default.
- W2972771548 hasConcept C43617362 @default.
- W2972771548 hasConcept C4725764 @default.
- W2972771548 hasConcept C47446073 @default.
- W2972771548 hasConcept C62520636 @default.
- W2972771548 hasConcept C74650414 @default.
- W2972771548 hasConcept C97257150 @default.
- W2972771548 hasConceptScore W2972771548C104114177 @default.
- W2972771548 hasConceptScore W2972771548C121332964 @default.
- W2972771548 hasConceptScore W2972771548C127413603 @default.
- W2972771548 hasConceptScore W2972771548C1276947 @default.
- W2972771548 hasConceptScore W2972771548C13662910 @default.
- W2972771548 hasConceptScore W2972771548C146978453 @default.
- W2972771548 hasConceptScore W2972771548C154945302 @default.
- W2972771548 hasConceptScore W2972771548C163258240 @default.
- W2972771548 hasConceptScore W2972771548C171146098 @default.
- W2972771548 hasConceptScore W2972771548C185592680 @default.
- W2972771548 hasConceptScore W2972771548C2775924081 @default.
- W2972771548 hasConceptScore W2972771548C2780444116 @default.
- W2972771548 hasConceptScore W2972771548C41008148 @default.
- W2972771548 hasConceptScore W2972771548C43617362 @default.
- W2972771548 hasConceptScore W2972771548C4725764 @default.
- W2972771548 hasConceptScore W2972771548C47446073 @default.
- W2972771548 hasConceptScore W2972771548C62520636 @default.
- W2972771548 hasConceptScore W2972771548C74650414 @default.
- W2972771548 hasConceptScore W2972771548C97257150 @default.
- W2972771548 hasFunder F4320321001 @default.
- W2972771548 hasLocation W29727715481 @default.
- W2972771548 hasOpenAccess W2972771548 @default.
- W2972771548 hasPrimaryLocation W29727715481 @default.
- W2972771548 hasRelatedWork W2050193860 @default.
- W2972771548 hasRelatedWork W2097558890 @default.
- W2972771548 hasRelatedWork W2237447395 @default.
- W2972771548 hasRelatedWork W2264408203 @default.
- W2972771548 hasRelatedWork W2351145452 @default.