Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972792628> ?p ?o ?g. }
- W2972792628 endingPage "3988" @default.
- W2972792628 startingPage "3988" @default.
- W2972792628 abstract "Weather radar echo is the data detected by the weather radar sensor and reflects the intensity of meteorological targets. Using the technique of radar echo extrapolation, which is the prediction of future echoes based on historical echo observations, the approaching short-term weather conditions can be forecasted, and warnings can be raised with regard to disastrous weather. Recently, deep learning based extrapolation methods have been proposed and show significant application potential. However, there are two limitations of existing extrapolation methods which should be considered. First, few methods have investigated the impact of the evolutionary process of weather systems on extrapolation accuracy. Second, current deep learning methods usually encounter the problem of blurry echo prediction as extrapolation goes deeper. In this paper, we aim to address the two problems by proposing a Multi-Level Correlation Long Short-Term Memory (MLC-LSTM) and integrate the adversarial training into our approach. The MLC-LSTM can exploit the spatiotemporal correlation between multi-level radar echoes and model their evolution, while the adversarial training can help the model extrapolate realistic and sharp echoes. To train and test our model, we build a real-life multi-level weather radar echoes dataset based on raw CINRAD/SA radar observations provided by the National Meteorological Information Center, China. Extrapolation experiments show that our model can accurately forecast the motion and evolution of an echo while keeping the predicted echo looking realistic and fine-grained. For quantitative evaluation on probability of detection (POD), false alarm rate (FAR), critical success index (CSI), and Heidke skill score (HSS) metrics, our model can reach average scores of 0.6538 POD, 0.2818 FAR, 0.5348 CSI, and 0.6298 HSS, respectively when extrapolating 15 echoes into the future, which outperforms the current state-of-the-art extrapolation methods. Both the qualitative and quantitative experimental results demonstrate the effectiveness of our model, suggesting that it can be effectively applied to operational weather forecasting practice." @default.
- W2972792628 created "2019-09-19" @default.
- W2972792628 creator A5028697103 @default.
- W2972792628 creator A5038180826 @default.
- W2972792628 creator A5057744965 @default.
- W2972792628 date "2019-09-15" @default.
- W2972792628 modified "2023-10-14" @default.
- W2972792628 title "MLC-LSTM: Exploiting the Spatiotemporal Correlation between Multi-Level Weather Radar Echoes for Echo Sequence Extrapolation" @default.
- W2972792628 cites W1578285471 @default.
- W2972792628 cites W1986807807 @default.
- W2972792628 cites W2016184960 @default.
- W2972792628 cites W2042172159 @default.
- W2972792628 cites W2044628480 @default.
- W2972792628 cites W2048563318 @default.
- W2972792628 cites W2058913535 @default.
- W2972792628 cites W2064675550 @default.
- W2972792628 cites W2094448605 @default.
- W2972792628 cites W2108313219 @default.
- W2972792628 cites W2114770744 @default.
- W2972792628 cites W2117671103 @default.
- W2972792628 cites W2129685568 @default.
- W2972792628 cites W2131774270 @default.
- W2972792628 cites W2133665775 @default.
- W2972792628 cites W2167251146 @default.
- W2972792628 cites W2171314103 @default.
- W2972792628 cites W2174781512 @default.
- W2972792628 cites W2175461096 @default.
- W2972792628 cites W2177216641 @default.
- W2972792628 cites W2180800489 @default.
- W2972792628 cites W2594928006 @default.
- W2972792628 cites W2919115771 @default.
- W2972792628 cites W2943446701 @default.
- W2972792628 doi "https://doi.org/10.3390/s19183988" @default.
- W2972792628 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6767588" @default.
- W2972792628 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31540189" @default.
- W2972792628 hasPublicationYear "2019" @default.
- W2972792628 type Work @default.
- W2972792628 sameAs 2972792628 @default.
- W2972792628 citedByCount "25" @default.
- W2972792628 countsByYear W29727926282020 @default.
- W2972792628 countsByYear W29727926282021 @default.
- W2972792628 countsByYear W29727926282022 @default.
- W2972792628 countsByYear W29727926282023 @default.
- W2972792628 crossrefType "journal-article" @default.
- W2972792628 hasAuthorship W2972792628A5028697103 @default.
- W2972792628 hasAuthorship W2972792628A5038180826 @default.
- W2972792628 hasAuthorship W2972792628A5057744965 @default.
- W2972792628 hasBestOaLocation W29727926281 @default.
- W2972792628 hasConcept C105795698 @default.
- W2972792628 hasConcept C108583219 @default.
- W2972792628 hasConcept C119857082 @default.
- W2972792628 hasConcept C132459708 @default.
- W2972792628 hasConcept C153294291 @default.
- W2972792628 hasConcept C154945302 @default.
- W2972792628 hasConcept C205649164 @default.
- W2972792628 hasConcept C2777211547 @default.
- W2972792628 hasConcept C2779426996 @default.
- W2972792628 hasConcept C2781013037 @default.
- W2972792628 hasConcept C31258907 @default.
- W2972792628 hasConcept C33923547 @default.
- W2972792628 hasConcept C41008148 @default.
- W2972792628 hasConcept C554190296 @default.
- W2972792628 hasConcept C62649853 @default.
- W2972792628 hasConcept C76155785 @default.
- W2972792628 hasConcept C92237259 @default.
- W2972792628 hasConceptScore W2972792628C105795698 @default.
- W2972792628 hasConceptScore W2972792628C108583219 @default.
- W2972792628 hasConceptScore W2972792628C119857082 @default.
- W2972792628 hasConceptScore W2972792628C132459708 @default.
- W2972792628 hasConceptScore W2972792628C153294291 @default.
- W2972792628 hasConceptScore W2972792628C154945302 @default.
- W2972792628 hasConceptScore W2972792628C205649164 @default.
- W2972792628 hasConceptScore W2972792628C2777211547 @default.
- W2972792628 hasConceptScore W2972792628C2779426996 @default.
- W2972792628 hasConceptScore W2972792628C2781013037 @default.
- W2972792628 hasConceptScore W2972792628C31258907 @default.
- W2972792628 hasConceptScore W2972792628C33923547 @default.
- W2972792628 hasConceptScore W2972792628C41008148 @default.
- W2972792628 hasConceptScore W2972792628C554190296 @default.
- W2972792628 hasConceptScore W2972792628C62649853 @default.
- W2972792628 hasConceptScore W2972792628C76155785 @default.
- W2972792628 hasConceptScore W2972792628C92237259 @default.
- W2972792628 hasFunder F4320335473 @default.
- W2972792628 hasFunder F4320335595 @default.
- W2972792628 hasFunder F4320335777 @default.
- W2972792628 hasIssue "18" @default.
- W2972792628 hasLocation W29727926281 @default.
- W2972792628 hasLocation W29727926282 @default.
- W2972792628 hasLocation W29727926283 @default.
- W2972792628 hasLocation W29727926284 @default.
- W2972792628 hasLocation W29727926285 @default.
- W2972792628 hasOpenAccess W2972792628 @default.
- W2972792628 hasPrimaryLocation W29727926281 @default.
- W2972792628 hasRelatedWork W1544437858 @default.
- W2972792628 hasRelatedWork W1933455866 @default.
- W2972792628 hasRelatedWork W2036324114 @default.
- W2972792628 hasRelatedWork W2103872600 @default.
- W2972792628 hasRelatedWork W2128697856 @default.