Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972832908> ?p ?o ?g. }
- W2972832908 endingPage "109944" @default.
- W2972832908 startingPage "109944" @default.
- W2972832908 abstract "The past decade has seen rapid development in DNA methylation (DNAm) microarrays, including the Illumina HumanMethylation27 and HumanMethylation450 (450 K) chips, which have played an essential role in identifying and evaluating age-related (AR) DNAm markers in different tissues. Recently, a new array, the Illumina MethylationEPIC (EPIC) was introduced, with nearly double the number of probes as the 450 K (∼850,000 probes). In this study, we test these newly added probes for age association using a large cohort of 754 DNAm profiles from blood samples assayed on the EPIC BeadChip, for individuals aged 0–88 years old. 52 AR CpG sites (Spearman’s abs(rho) >0.6 and P-value <10−83) were identified, 21 of which were novel sites and mapped to 18 genes, nine of which (LHFPL4, SLC12A8, EGFEM1P, GPR158, TAL1, KIAA1755, LOC730668, DUSP16, and FAM65C) have never previously been reported to be associated with age. The data were subsequently split into a 527-sample training set and a 227-sample testing set to build and validate two age prediction models using elastic net regression and multivariate regression. Elastic net regression selected 425 CpG markers with a mean absolute deviation (MAD) of 2.6 years based on the testing set. To build a multivariate linear regression model, AR CpG sites with R2 > 0.5 at FDR < 0.05 were input into stepwise regression to select the best subset for age prediction. The resulting six CpG markers were linearly modelled with age and explained 81% of age-correlated variation in DNAm levels. Age estimation accuracy using bootstrap analysis was 4.5 years, with 95% confidence intervals of 4.56 to 4.57 years based on the testing set. These results suggest that EPIC BeadChip probes for age estimation fall within the range of probes found on the previous Illumina HumanMethylation platforms in terms of their age-prediction ability." @default.
- W2972832908 created "2019-09-19" @default.
- W2972832908 creator A5004859760 @default.
- W2972832908 creator A5055899178 @default.
- W2972832908 date "2019-10-01" @default.
- W2972832908 modified "2023-10-18" @default.
- W2972832908 title "Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip" @default.
- W2972832908 cites W1639076783 @default.
- W2972832908 cites W1974047233 @default.
- W2972832908 cites W1980326316 @default.
- W2972832908 cites W1987793414 @default.
- W2972832908 cites W1992911777 @default.
- W2972832908 cites W2017502278 @default.
- W2972832908 cites W2022152889 @default.
- W2972832908 cites W2028565242 @default.
- W2972832908 cites W2028934624 @default.
- W2972832908 cites W2039669402 @default.
- W2972832908 cites W2042160423 @default.
- W2972832908 cites W2050112556 @default.
- W2972832908 cites W2050729461 @default.
- W2972832908 cites W2056040742 @default.
- W2972832908 cites W2056379159 @default.
- W2972832908 cites W2059531289 @default.
- W2972832908 cites W2068170042 @default.
- W2972832908 cites W2074017816 @default.
- W2972832908 cites W2100239923 @default.
- W2972832908 cites W2101214870 @default.
- W2972832908 cites W2101870168 @default.
- W2972832908 cites W2107665951 @default.
- W2972832908 cites W2108797218 @default.
- W2972832908 cites W2108947463 @default.
- W2972832908 cites W2111775559 @default.
- W2972832908 cites W2113649341 @default.
- W2972832908 cites W2121091193 @default.
- W2972832908 cites W2125334940 @default.
- W2972832908 cites W2126525177 @default.
- W2972832908 cites W2130523009 @default.
- W2972832908 cites W2132497768 @default.
- W2972832908 cites W2136691282 @default.
- W2972832908 cites W2136970997 @default.
- W2972832908 cites W2145803684 @default.
- W2972832908 cites W2146794662 @default.
- W2972832908 cites W2162830799 @default.
- W2972832908 cites W2166408148 @default.
- W2972832908 cites W2168880641 @default.
- W2972832908 cites W2169556367 @default.
- W2972832908 cites W2181388765 @default.
- W2972832908 cites W2218040246 @default.
- W2972832908 cites W2260295466 @default.
- W2972832908 cites W2290343632 @default.
- W2972832908 cites W2298284297 @default.
- W2972832908 cites W2338651870 @default.
- W2972832908 cites W2345981936 @default.
- W2972832908 cites W2421283105 @default.
- W2972832908 cites W2505539351 @default.
- W2972832908 cites W2529024004 @default.
- W2972832908 cites W2567721002 @default.
- W2972832908 cites W2592216350 @default.
- W2972832908 cites W2606184024 @default.
- W2972832908 cites W2739955173 @default.
- W2972832908 cites W2762313204 @default.
- W2972832908 cites W2773054736 @default.
- W2972832908 cites W2788536909 @default.
- W2972832908 cites W2890966115 @default.
- W2972832908 cites W2893582942 @default.
- W2972832908 cites W2894586046 @default.
- W2972832908 cites W2897267849 @default.
- W2972832908 cites W2913388295 @default.
- W2972832908 doi "https://doi.org/10.1016/j.forsciint.2019.109944" @default.
- W2972832908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31546163" @default.
- W2972832908 hasPublicationYear "2019" @default.
- W2972832908 type Work @default.
- W2972832908 sameAs 2972832908 @default.
- W2972832908 citedByCount "17" @default.
- W2972832908 countsByYear W29728329082020 @default.
- W2972832908 countsByYear W29728329082021 @default.
- W2972832908 countsByYear W29728329082022 @default.
- W2972832908 countsByYear W29728329082023 @default.
- W2972832908 crossrefType "journal-article" @default.
- W2972832908 hasAuthorship W2972832908A5004859760 @default.
- W2972832908 hasAuthorship W2972832908A5055899178 @default.
- W2972832908 hasBestOaLocation W29728329082 @default.
- W2972832908 hasConcept C104317684 @default.
- W2972832908 hasConcept C105795698 @default.
- W2972832908 hasConcept C126322002 @default.
- W2972832908 hasConcept C140173407 @default.
- W2972832908 hasConcept C143998085 @default.
- W2972832908 hasConcept C150194340 @default.
- W2972832908 hasConcept C161584116 @default.
- W2972832908 hasConcept C170964787 @default.
- W2972832908 hasConcept C190727270 @default.
- W2972832908 hasConcept C2775921022 @default.
- W2972832908 hasConcept C33288867 @default.
- W2972832908 hasConcept C33923547 @default.
- W2972832908 hasConcept C48921125 @default.
- W2972832908 hasConcept C54355233 @default.
- W2972832908 hasConcept C552990157 @default.
- W2972832908 hasConcept C64946054 @default.