Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972840425> ?p ?o ?g. }
- W2972840425 abstract "In many real-world scenarios where data is high dimensional, test time acquisition of features is a non-trivial task due to costs associated with feature acquisition and evaluating feature value. The need for highly confident models with an extremely frugal acquisition of features can be addressed by allowing a feature selection method to become target aware. We introduce an approach to feature selection that is based on Bayesian learning, allowing us to report target-specific levels of uncertainty, false positive, and false negative rates. In addition, measuring uncertainty lifts the restriction on feature selection being target agnostic, allowing for feature acquisition based on a single target of focus out of many. We show that acquiring features for a specific target is at least as good as common linear feature selection approaches for small non-sparse datasets, and surpasses these when faced with real-world healthcare data that is larger in scale and in sparseness." @default.
- W2972840425 created "2019-09-19" @default.
- W2972840425 creator A5017065593 @default.
- W2972840425 creator A5037374629 @default.
- W2972840425 creator A5078132977 @default.
- W2972840425 creator A5091312650 @default.
- W2972840425 date "2019-09-15" @default.
- W2972840425 modified "2023-09-23" @default.
- W2972840425 title "Target-Focused Feature Selection Using a Bayesian Approach." @default.
- W2972840425 cites W1494192115 @default.
- W2972840425 cites W1503398984 @default.
- W2972840425 cites W1506806321 @default.
- W2972840425 cites W1516111018 @default.
- W2972840425 cites W1553080079 @default.
- W2972840425 cites W1959608418 @default.
- W2972840425 cites W1994163801 @default.
- W2972840425 cites W2040884411 @default.
- W2972840425 cites W2056132907 @default.
- W2972840425 cites W2092939357 @default.
- W2972840425 cites W2119479037 @default.
- W2972840425 cites W2127538960 @default.
- W2972840425 cites W2135046866 @default.
- W2972840425 cites W2154053567 @default.
- W2972840425 cites W2285118877 @default.
- W2972840425 cites W2502366096 @default.
- W2972840425 cites W2545104188 @default.
- W2972840425 cites W2569168369 @default.
- W2972840425 cites W2808131649 @default.
- W2972840425 cites W2808262182 @default.
- W2972840425 cites W2916326227 @default.
- W2972840425 cites W2953802602 @default.
- W2972840425 cites W2963306291 @default.
- W2972840425 cites W3097993951 @default.
- W2972840425 cites W2618016951 @default.
- W2972840425 hasPublicationYear "2019" @default.
- W2972840425 type Work @default.
- W2972840425 sameAs 2972840425 @default.
- W2972840425 citedByCount "0" @default.
- W2972840425 crossrefType "posted-content" @default.
- W2972840425 hasAuthorship W2972840425A5017065593 @default.
- W2972840425 hasAuthorship W2972840425A5037374629 @default.
- W2972840425 hasAuthorship W2972840425A5078132977 @default.
- W2972840425 hasAuthorship W2972840425A5091312650 @default.
- W2972840425 hasConcept C107673813 @default.
- W2972840425 hasConcept C119857082 @default.
- W2972840425 hasConcept C120665830 @default.
- W2972840425 hasConcept C121332964 @default.
- W2972840425 hasConcept C124101348 @default.
- W2972840425 hasConcept C127413603 @default.
- W2972840425 hasConcept C138885662 @default.
- W2972840425 hasConcept C148483581 @default.
- W2972840425 hasConcept C153180895 @default.
- W2972840425 hasConcept C154945302 @default.
- W2972840425 hasConcept C192209626 @default.
- W2972840425 hasConcept C201995342 @default.
- W2972840425 hasConcept C2776401178 @default.
- W2972840425 hasConcept C2780451532 @default.
- W2972840425 hasConcept C41008148 @default.
- W2972840425 hasConcept C41895202 @default.
- W2972840425 hasConcept C81917197 @default.
- W2972840425 hasConceptScore W2972840425C107673813 @default.
- W2972840425 hasConceptScore W2972840425C119857082 @default.
- W2972840425 hasConceptScore W2972840425C120665830 @default.
- W2972840425 hasConceptScore W2972840425C121332964 @default.
- W2972840425 hasConceptScore W2972840425C124101348 @default.
- W2972840425 hasConceptScore W2972840425C127413603 @default.
- W2972840425 hasConceptScore W2972840425C138885662 @default.
- W2972840425 hasConceptScore W2972840425C148483581 @default.
- W2972840425 hasConceptScore W2972840425C153180895 @default.
- W2972840425 hasConceptScore W2972840425C154945302 @default.
- W2972840425 hasConceptScore W2972840425C192209626 @default.
- W2972840425 hasConceptScore W2972840425C201995342 @default.
- W2972840425 hasConceptScore W2972840425C2776401178 @default.
- W2972840425 hasConceptScore W2972840425C2780451532 @default.
- W2972840425 hasConceptScore W2972840425C41008148 @default.
- W2972840425 hasConceptScore W2972840425C41895202 @default.
- W2972840425 hasConceptScore W2972840425C81917197 @default.
- W2972840425 hasLocation W29728404251 @default.
- W2972840425 hasOpenAccess W2972840425 @default.
- W2972840425 hasPrimaryLocation W29728404251 @default.
- W2972840425 hasRelatedWork W1542831055 @default.
- W2972840425 hasRelatedWork W2076428881 @default.
- W2972840425 hasRelatedWork W2101342494 @default.
- W2972840425 hasRelatedWork W2416225213 @default.
- W2972840425 hasRelatedWork W2754199135 @default.
- W2972840425 hasRelatedWork W2762941244 @default.
- W2972840425 hasRelatedWork W2771135177 @default.
- W2972840425 hasRelatedWork W2786257066 @default.
- W2972840425 hasRelatedWork W2792362609 @default.
- W2972840425 hasRelatedWork W2885614550 @default.
- W2972840425 hasRelatedWork W2946138433 @default.
- W2972840425 hasRelatedWork W2978549524 @default.
- W2972840425 hasRelatedWork W2993975328 @default.
- W2972840425 hasRelatedWork W2995463097 @default.
- W2972840425 hasRelatedWork W3033159426 @default.
- W2972840425 hasRelatedWork W3092675191 @default.
- W2972840425 hasRelatedWork W3195814011 @default.
- W2972840425 hasRelatedWork W2185571990 @default.
- W2972840425 hasRelatedWork W2894515000 @default.
- W2972840425 hasRelatedWork W3117921602 @default.