Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972854400> ?p ?o ?g. }
- W2972854400 endingPage "3918" @default.
- W2972854400 startingPage "3900" @default.
- W2972854400 abstract "Ongoing planetary exploration missions are returning large volumes of image data. Identifying surface changes in these images, e.g., new impact craters, is critical for investigating many scientific hypotheses. Traditional approaches to change detection rely on image differencing and manual feature engineering. These methods can be sensitive to irrelevant variations in illumination or image quality and typically require before and after images to be coregistered, which itself is a major challenge. Additionally, most prior change detection studies have been limited to remote sensing images of earth. We propose a new deep learning approach for binary patch-level change detection involving transfer learning and nonlinear dimensionality reduction using convolutional autoencoders. Our experiments on diverse remote sensing datasets of Mars, the moon, and earth show that our methods can detect meaningful changes with high accuracy using a relatively small training dataset despite significant differences in illumination, image quality, imaging sensors, coregistration, and surface properties. We show that the latent representations learned by a convolutional autoencoder yield the most general representations for detecting change across surface feature types, scales, sensors, and planetary bodies." @default.
- W2972854400 created "2019-09-19" @default.
- W2972854400 creator A5024068845 @default.
- W2972854400 creator A5026172631 @default.
- W2972854400 creator A5043276600 @default.
- W2972854400 creator A5053180513 @default.
- W2972854400 creator A5061307853 @default.
- W2972854400 creator A5091162047 @default.
- W2972854400 date "2019-10-01" @default.
- W2972854400 modified "2023-10-16" @default.
- W2972854400 title "Toward Generalized Change Detection on Planetary Surfaces With Convolutional Autoencoders and Transfer Learning" @default.
- W2972854400 cites W1912954554 @default.
- W2972854400 cites W1970737988 @default.
- W2972854400 cites W1971203776 @default.
- W2972854400 cites W1979061792 @default.
- W2972854400 cites W1984629390 @default.
- W2972854400 cites W1998780374 @default.
- W2972854400 cites W2001412060 @default.
- W2972854400 cites W2009175701 @default.
- W2972854400 cites W2013789326 @default.
- W2972854400 cites W2019452249 @default.
- W2972854400 cites W2028483491 @default.
- W2972854400 cites W2029161185 @default.
- W2972854400 cites W2036632898 @default.
- W2972854400 cites W2036798369 @default.
- W2972854400 cites W2041368885 @default.
- W2972854400 cites W2056211433 @default.
- W2972854400 cites W2062118960 @default.
- W2972854400 cites W2064675550 @default.
- W2972854400 cites W2072194847 @default.
- W2972854400 cites W2076509405 @default.
- W2972854400 cites W2076576187 @default.
- W2972854400 cites W2085289201 @default.
- W2972854400 cites W2098676252 @default.
- W2972854400 cites W2100495367 @default.
- W2972854400 cites W2107026750 @default.
- W2972854400 cites W2108598243 @default.
- W2972854400 cites W2111320133 @default.
- W2972854400 cites W2111787810 @default.
- W2972854400 cites W2117586409 @default.
- W2972854400 cites W2118116484 @default.
- W2972854400 cites W2124797185 @default.
- W2972854400 cites W2130020884 @default.
- W2972854400 cites W2131228247 @default.
- W2972854400 cites W2136655611 @default.
- W2972854400 cites W2140023211 @default.
- W2972854400 cites W2153633422 @default.
- W2972854400 cites W2153864221 @default.
- W2972854400 cites W2157026765 @default.
- W2972854400 cites W2157364932 @default.
- W2972854400 cites W2158496884 @default.
- W2972854400 cites W2161001197 @default.
- W2972854400 cites W2183341477 @default.
- W2972854400 cites W2221448138 @default.
- W2972854400 cites W2233501099 @default.
- W2972854400 cites W2295862745 @default.
- W2972854400 cites W2346062110 @default.
- W2972854400 cites W2431738724 @default.
- W2972854400 cites W2523311857 @default.
- W2972854400 cites W2529879068 @default.
- W2972854400 cites W2587329506 @default.
- W2972854400 cites W2614445056 @default.
- W2972854400 cites W2751993439 @default.
- W2972854400 cites W2752414286 @default.
- W2972854400 cites W2766671789 @default.
- W2972854400 cites W2782522152 @default.
- W2972854400 cites W2792416626 @default.
- W2972854400 cites W2792827505 @default.
- W2972854400 cites W2802112806 @default.
- W2972854400 cites W2806667453 @default.
- W2972854400 cites W2885667473 @default.
- W2972854400 cites W2887498686 @default.
- W2972854400 cites W2898200895 @default.
- W2972854400 cites W2900587135 @default.
- W2972854400 cites W2910587630 @default.
- W2972854400 cites W2919115771 @default.
- W2972854400 cites W2963995737 @default.
- W2972854400 cites W2964810917 @default.
- W2972854400 cites W3099831940 @default.
- W2972854400 cites W3105127913 @default.
- W2972854400 cites W3105577662 @default.
- W2972854400 cites W59495185 @default.
- W2972854400 doi "https://doi.org/10.1109/jstars.2019.2936771" @default.
- W2972854400 hasPublicationYear "2019" @default.
- W2972854400 type Work @default.
- W2972854400 sameAs 2972854400 @default.
- W2972854400 citedByCount "25" @default.
- W2972854400 countsByYear W29728544002020 @default.
- W2972854400 countsByYear W29728544002021 @default.
- W2972854400 countsByYear W29728544002022 @default.
- W2972854400 countsByYear W29728544002023 @default.
- W2972854400 crossrefType "journal-article" @default.
- W2972854400 hasAuthorship W2972854400A5024068845 @default.
- W2972854400 hasAuthorship W2972854400A5026172631 @default.
- W2972854400 hasAuthorship W2972854400A5043276600 @default.
- W2972854400 hasAuthorship W2972854400A5053180513 @default.
- W2972854400 hasAuthorship W2972854400A5061307853 @default.
- W2972854400 hasAuthorship W2972854400A5091162047 @default.