Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972960783> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2972960783 endingPage "148046" @default.
- W2972960783 startingPage "148031" @default.
- W2972960783 abstract "Driving behavior recognition is a challenging task that exploits the acceleration and angular velocity information of the vehicle collected by smartphone to identify various driving events. Traditional methods usually extract hand-crafted features from raw data, leading to under-explored temporal features of driving behaviors. To address the issue of hand-designed limitation for features, this paper proposes an end-to-end deep learning framework to automatically extract the features of driving behaviors. The mechanism behind our method is to model temporal features, capture salient structure features, and explore the correlation among the high-dimensional sensor data by fusing convolutional neural network (CNN) and recurrent neural network (RNN) with an attention unit. Moreover, a novel approach is introduced to build driving behavior dataset, which considers the effect of gravity in modeling smartphone sensor data. Subsequently, sensor data with device position independence is collected, and six types of driving events (straight driving, static, left turn, right turn, breaking, and acceleration) are annotated, which provides rich sensor information compared with other methods. The experimental results indicate that the proposed model outperforms other competing methods significantly, which possesses good generalization ability in the identification of driving behaviors." @default.
- W2972960783 created "2019-09-19" @default.
- W2972960783 creator A5000432967 @default.
- W2972960783 creator A5002710972 @default.
- W2972960783 creator A5018519007 @default.
- W2972960783 creator A5034876495 @default.
- W2972960783 creator A5039615242 @default.
- W2972960783 creator A5074370589 @default.
- W2972960783 creator A5077352796 @default.
- W2972960783 creator A5079266016 @default.
- W2972960783 date "2019-01-01" @default.
- W2972960783 modified "2023-10-15" @default.
- W2972960783 title "Attention-Based Convolutional and Recurrent Neural Networks for Driving Behavior Recognition Using Smartphone Sensor Data" @default.
- W2972960783 cites W1997086460 @default.
- W2972960783 cites W2002261403 @default.
- W2972960783 cites W2021638310 @default.
- W2972960783 cites W2034411841 @default.
- W2972960783 cites W2067907977 @default.
- W2972960783 cites W2069899054 @default.
- W2972960783 cites W2071628512 @default.
- W2972960783 cites W2074967085 @default.
- W2972960783 cites W2083863819 @default.
- W2972960783 cites W2088849001 @default.
- W2972960783 cites W2117431273 @default.
- W2972960783 cites W2151666054 @default.
- W2972960783 cites W2155889930 @default.
- W2972960783 cites W2158698691 @default.
- W2972960783 cites W2172717914 @default.
- W2972960783 cites W2270470215 @default.
- W2972960783 cites W2286343943 @default.
- W2972960783 cites W2463638851 @default.
- W2972960783 cites W2551239383 @default.
- W2972960783 cites W2581145574 @default.
- W2972960783 cites W2586457790 @default.
- W2972960783 cites W2606851531 @default.
- W2972960783 cites W2734936567 @default.
- W2972960783 cites W2750674396 @default.
- W2972960783 cites W2761363208 @default.
- W2972960783 cites W2769581371 @default.
- W2972960783 cites W2790122192 @default.
- W2972960783 cites W2791521493 @default.
- W2972960783 cites W2792776757 @default.
- W2972960783 cites W2810323699 @default.
- W2972960783 cites W2896308858 @default.
- W2972960783 cites W2904308980 @default.
- W2972960783 cites W2908986800 @default.
- W2972960783 cites W2910152998 @default.
- W2972960783 cites W2921143934 @default.
- W2972960783 cites W2938719104 @default.
- W2972960783 cites W2946768382 @default.
- W2972960783 cites W41174686 @default.
- W2972960783 cites W944070795 @default.
- W2972960783 doi "https://doi.org/10.1109/access.2019.2932434" @default.
- W2972960783 hasPublicationYear "2019" @default.
- W2972960783 type Work @default.
- W2972960783 sameAs 2972960783 @default.
- W2972960783 citedByCount "29" @default.
- W2972960783 countsByYear W29729607832020 @default.
- W2972960783 countsByYear W29729607832021 @default.
- W2972960783 countsByYear W29729607832022 @default.
- W2972960783 countsByYear W29729607832023 @default.
- W2972960783 crossrefType "journal-article" @default.
- W2972960783 hasAuthorship W2972960783A5000432967 @default.
- W2972960783 hasAuthorship W2972960783A5002710972 @default.
- W2972960783 hasAuthorship W2972960783A5018519007 @default.
- W2972960783 hasAuthorship W2972960783A5034876495 @default.
- W2972960783 hasAuthorship W2972960783A5039615242 @default.
- W2972960783 hasAuthorship W2972960783A5074370589 @default.
- W2972960783 hasAuthorship W2972960783A5077352796 @default.
- W2972960783 hasAuthorship W2972960783A5079266016 @default.
- W2972960783 hasBestOaLocation W29729607831 @default.
- W2972960783 hasConcept C153180895 @default.
- W2972960783 hasConcept C154945302 @default.
- W2972960783 hasConcept C41008148 @default.
- W2972960783 hasConcept C81363708 @default.
- W2972960783 hasConceptScore W2972960783C153180895 @default.
- W2972960783 hasConceptScore W2972960783C154945302 @default.
- W2972960783 hasConceptScore W2972960783C41008148 @default.
- W2972960783 hasConceptScore W2972960783C81363708 @default.
- W2972960783 hasFunder F4320321133 @default.
- W2972960783 hasLocation W29729607831 @default.
- W2972960783 hasOpenAccess W2972960783 @default.
- W2972960783 hasPrimaryLocation W29729607831 @default.
- W2972960783 hasRelatedWork W2175746458 @default.
- W2972960783 hasRelatedWork W2732542196 @default.
- W2972960783 hasRelatedWork W2738221750 @default.
- W2972960783 hasRelatedWork W2758063741 @default.
- W2972960783 hasRelatedWork W2760085659 @default.
- W2972960783 hasRelatedWork W2912288872 @default.
- W2972960783 hasRelatedWork W3012978760 @default.
- W2972960783 hasRelatedWork W3081496756 @default.
- W2972960783 hasRelatedWork W3093612317 @default.
- W2972960783 hasRelatedWork W4304820710 @default.
- W2972960783 hasVolume "7" @default.
- W2972960783 isParatext "false" @default.
- W2972960783 isRetracted "false" @default.
- W2972960783 magId "2972960783" @default.
- W2972960783 workType "article" @default.