Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972972597> ?p ?o ?g. }
- W2972972597 endingPage "3940" @default.
- W2972972597 startingPage "3940" @default.
- W2972972597 abstract "Prediction of possible landslide areas is the first stage of landslide hazard mitigation efforts and is also crucial for suitable site selection. Several statistical and machine learning methodologies have been applied for the production of landslide susceptibility maps. However, the performance assessment of such methods have conventionally been carried out by utilizing existing landslide inventories. The purpose of this study is to investigate the performances of landslide susceptibility maps produced with three different machine learning algorithms, i.e., random forest, artificial neural network, and logistic regression, in a recently constructed and activated dam reservoir and assess the external quality of each map by using pre- and post-event photogrammetric datasets. The methodology introduced here was applied using digital surface models generated from aerial photogrammetric flight data acquired before and after the dam construction. Aerial photogrammetric images acquired in 2012 and 2018 (after the dam was filled) were used to produce digital terrain models and orthophotos. The 2012 dataset was used for producing the landslide susceptibility maps and the results were evaluated by comparing the Euclidian distances between the two surface models. The results show that the random forest method outperforms the other two for predicting the future landslides." @default.
- W2972972597 created "2019-09-19" @default.
- W2972972597 creator A5009051563 @default.
- W2972972597 creator A5044205942 @default.
- W2972972597 creator A5057724636 @default.
- W2972972597 creator A5084359132 @default.
- W2972972597 date "2019-09-12" @default.
- W2972972597 modified "2023-09-27" @default.
- W2972972597 title "A Novel Performance Assessment Approach using Photogrammetric Techniques for Landslide Susceptibility Mapping with Logistic Regression, ANN and Random Forest" @default.
- W2972972597 cites W1697040052 @default.
- W2972972597 cites W1968979926 @default.
- W2972972597 cites W1979486410 @default.
- W2972972597 cites W1990748933 @default.
- W2972972597 cites W1997659744 @default.
- W2972972597 cites W2003275689 @default.
- W2972972597 cites W2012118327 @default.
- W2972972597 cites W2012853691 @default.
- W2972972597 cites W2013177343 @default.
- W2972972597 cites W2017388337 @default.
- W2972972597 cites W2021693202 @default.
- W2972972597 cites W2029533748 @default.
- W2972972597 cites W2058469568 @default.
- W2972972597 cites W2092062749 @default.
- W2972972597 cites W2127739279 @default.
- W2972972597 cites W2143192068 @default.
- W2972972597 cites W2143296882 @default.
- W2972972597 cites W2147357873 @default.
- W2972972597 cites W2155653793 @default.
- W2972972597 cites W2218451952 @default.
- W2972972597 cites W2259343653 @default.
- W2972972597 cites W2287278712 @default.
- W2972972597 cites W2318342863 @default.
- W2972972597 cites W2417137833 @default.
- W2972972597 cites W2437658050 @default.
- W2972972597 cites W2528753685 @default.
- W2972972597 cites W2567326027 @default.
- W2972972597 cites W2584860397 @default.
- W2972972597 cites W2616018644 @default.
- W2972972597 cites W2738399372 @default.
- W2972972597 cites W2758350461 @default.
- W2972972597 cites W2790826728 @default.
- W2972972597 cites W2793831793 @default.
- W2972972597 cites W2890865225 @default.
- W2972972597 cites W2900274454 @default.
- W2972972597 cites W2901225872 @default.
- W2972972597 cites W2906593901 @default.
- W2972972597 cites W2911084988 @default.
- W2972972597 cites W2911424673 @default.
- W2972972597 cites W2911964244 @default.
- W2972972597 cites W2948196949 @default.
- W2972972597 cites W2959500497 @default.
- W2972972597 cites W4210949798 @default.
- W2972972597 doi "https://doi.org/10.3390/s19183940" @default.
- W2972972597 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6767354" @default.
- W2972972597 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31547342" @default.
- W2972972597 hasPublicationYear "2019" @default.
- W2972972597 type Work @default.
- W2972972597 sameAs 2972972597 @default.
- W2972972597 citedByCount "106" @default.
- W2972972597 countsByYear W29729725972019 @default.
- W2972972597 countsByYear W29729725972020 @default.
- W2972972597 countsByYear W29729725972021 @default.
- W2972972597 countsByYear W29729725972022 @default.
- W2972972597 countsByYear W29729725972023 @default.
- W2972972597 crossrefType "journal-article" @default.
- W2972972597 hasAuthorship W2972972597A5009051563 @default.
- W2972972597 hasAuthorship W2972972597A5044205942 @default.
- W2972972597 hasAuthorship W2972972597A5057724636 @default.
- W2972972597 hasAuthorship W2972972597A5084359132 @default.
- W2972972597 hasBestOaLocation W29729725971 @default.
- W2972972597 hasConcept C117455697 @default.
- W2972972597 hasConcept C119857082 @default.
- W2972972597 hasConcept C124101348 @default.
- W2972972597 hasConcept C127313418 @default.
- W2972972597 hasConcept C151956035 @default.
- W2972972597 hasConcept C154945302 @default.
- W2972972597 hasConcept C161840515 @default.
- W2972972597 hasConcept C169258074 @default.
- W2972972597 hasConcept C178790620 @default.
- W2972972597 hasConcept C181843262 @default.
- W2972972597 hasConcept C185592680 @default.
- W2972972597 hasConcept C186295008 @default.
- W2972972597 hasConcept C187320778 @default.
- W2972972597 hasConcept C205649164 @default.
- W2972972597 hasConcept C41008148 @default.
- W2972972597 hasConcept C49261128 @default.
- W2972972597 hasConcept C50644808 @default.
- W2972972597 hasConcept C58640448 @default.
- W2972972597 hasConcept C62649853 @default.
- W2972972597 hasConcept C82789328 @default.
- W2972972597 hasConceptScore W2972972597C117455697 @default.
- W2972972597 hasConceptScore W2972972597C119857082 @default.
- W2972972597 hasConceptScore W2972972597C124101348 @default.
- W2972972597 hasConceptScore W2972972597C127313418 @default.
- W2972972597 hasConceptScore W2972972597C151956035 @default.
- W2972972597 hasConceptScore W2972972597C154945302 @default.
- W2972972597 hasConceptScore W2972972597C161840515 @default.
- W2972972597 hasConceptScore W2972972597C169258074 @default.