Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972988024> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2972988024 abstract "Author(s): Toyama, Joy | Advisor(s): Ramirez, Christina Michelle | Abstract: In a variety of settings, including the medical field, it is common for the number of variables gathered to far exceed the sample size. Along with a high dimension, many of these included variables are often correlated. This can pose problems for traditional methods. Much of the time, the data cannot be utilized completely as is, but instead requires previous research to guide researchers to choose relevant predictors prior to model selection. Traditional methods such as logistic regression and mixed models cannot necessarily converge and struggle with identifiability when the number of measurements collected approach or become larger than the number of patients in the study. Machine-learning techniques, including Random Forests and the newly developed Fuzzy Forests method, can accommodate data with high dimensionality. We concentrate on decision trees in particular because of their relative ease of use, availability and predictive ability. Random Forest is a widely used, parallelizable and computationally efficient method; however it does not acknowledge any correlation between variables leading to a preference for correlated predictors. Fuzzy Forest, on the other hand, explicitly explores the correlation structure among the variables, leading to unbiased variable importance measures. Fuzzy Forest, along with Random Forest, is utilized in three applications; smoking cessation in health care workers, re-arrest among homeless ex-offenders and genetic predictors of lithium response in individuals with Bipolar disorder." @default.
- W2972988024 created "2019-09-19" @default.
- W2972988024 creator A5003602954 @default.
- W2972988024 date "2019-01-01" @default.
- W2972988024 modified "2023-09-27" @default.
- W2972988024 title "Statistical Analysis of Infectious Diseases in Nursing and Genomic Data" @default.
- W2972988024 hasPublicationYear "2019" @default.
- W2972988024 type Work @default.
- W2972988024 sameAs 2972988024 @default.
- W2972988024 citedByCount "0" @default.
- W2972988024 crossrefType "journal-article" @default.
- W2972988024 hasAuthorship W2972988024A5003602954 @default.
- W2972988024 hasConcept C105795698 @default.
- W2972988024 hasConcept C119857082 @default.
- W2972988024 hasConcept C124101348 @default.
- W2972988024 hasConcept C148483581 @default.
- W2972988024 hasConcept C149782125 @default.
- W2972988024 hasConcept C151956035 @default.
- W2972988024 hasConcept C154945302 @default.
- W2972988024 hasConcept C169258074 @default.
- W2972988024 hasConcept C2522767166 @default.
- W2972988024 hasConcept C33923547 @default.
- W2972988024 hasConcept C41008148 @default.
- W2972988024 hasConceptScore W2972988024C105795698 @default.
- W2972988024 hasConceptScore W2972988024C119857082 @default.
- W2972988024 hasConceptScore W2972988024C124101348 @default.
- W2972988024 hasConceptScore W2972988024C148483581 @default.
- W2972988024 hasConceptScore W2972988024C149782125 @default.
- W2972988024 hasConceptScore W2972988024C151956035 @default.
- W2972988024 hasConceptScore W2972988024C154945302 @default.
- W2972988024 hasConceptScore W2972988024C169258074 @default.
- W2972988024 hasConceptScore W2972988024C2522767166 @default.
- W2972988024 hasConceptScore W2972988024C33923547 @default.
- W2972988024 hasConceptScore W2972988024C41008148 @default.
- W2972988024 hasLocation W29729880241 @default.
- W2972988024 hasOpenAccess W2972988024 @default.
- W2972988024 hasPrimaryLocation W29729880241 @default.
- W2972988024 hasRelatedWork W2050652559 @default.
- W2972988024 hasRelatedWork W2061828456 @default.
- W2972988024 hasRelatedWork W2090380403 @default.
- W2972988024 hasRelatedWork W2104709112 @default.
- W2972988024 hasRelatedWork W2114466858 @default.
- W2972988024 hasRelatedWork W2185530785 @default.
- W2972988024 hasRelatedWork W2267077616 @default.
- W2972988024 hasRelatedWork W2326764731 @default.
- W2972988024 hasRelatedWork W2410950570 @default.
- W2972988024 hasRelatedWork W2493317263 @default.
- W2972988024 hasRelatedWork W2586305624 @default.
- W2972988024 hasRelatedWork W2772415334 @default.
- W2972988024 hasRelatedWork W2884792896 @default.
- W2972988024 hasRelatedWork W2943527904 @default.
- W2972988024 hasRelatedWork W2970152274 @default.
- W2972988024 hasRelatedWork W3096860451 @default.
- W2972988024 hasRelatedWork W3123926085 @default.
- W2972988024 hasRelatedWork W3148173100 @default.
- W2972988024 hasRelatedWork W371405523 @default.
- W2972988024 hasRelatedWork W2134639998 @default.
- W2972988024 isParatext "false" @default.
- W2972988024 isRetracted "false" @default.
- W2972988024 magId "2972988024" @default.
- W2972988024 workType "article" @default.