Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973013421> ?p ?o ?g. }
- W2973013421 endingPage "5339" @default.
- W2973013421 startingPage "5325" @default.
- W2973013421 abstract "Structural equation models (SEMs) and vector autoregressive models (VARMs) are two broad families of approaches that have been shown useful in effective brain connectivity studies. While VARMs postulate that a given region of interest in the brain is directionally connected to another one by virtue of time-lagged influences, SEMs assert that directed dependencies arise due to instantaneous effects, and may even be adopted when nodal measurements are not necessarily multivariate time series. To unify these complementary perspectives, linear structural vector autoregressive models (SVARMs) that leverage both instantaneous and time-lagged nodal data have recently been put forth. Albeit simple and tractable, linear SVARMs are quite limited since they are incapable of modeling nonlinear dependencies between neuronal time series. To this end, the overarching goal of the present paper is to considerably broaden the span of linear SVARMs by capturing nonlinearities through kernels, which have recently emerged as a powerful nonlinear modeling framework in canonical machine learning tasks, e.g., regression, classification, and dimensionality reduction. The merits of kernel-based methods are extended here to the task of learning the effective brain connectivity, and an efficient regularized estimator is put forth to leverage the edge sparsity inherent to real-world complex networks. Judicious kernel choice from a preselected dictionary of kernels is also addressed using a data-driven approach. Numerical tests on ECoG data captured through a study on epileptic seizures demonstrate that it is possible to unveil previously unknown directed links between brain regions of interest." @default.
- W2973013421 created "2019-09-19" @default.
- W2973013421 creator A5019337064 @default.
- W2973013421 creator A5026758314 @default.
- W2973013421 creator A5067879588 @default.
- W2973013421 date "2019-10-15" @default.
- W2973013421 modified "2023-10-18" @default.
- W2973013421 title "Nonlinear Structural Vector Autoregressive Models With Application to Directed Brain Networks" @default.
- W2973013421 cites W1584037400 @default.
- W2973013421 cites W1979773754 @default.
- W2973013421 cites W1981903823 @default.
- W2973013421 cites W1999929130 @default.
- W2973013421 cites W2010192956 @default.
- W2973013421 cites W2021768951 @default.
- W2973013421 cites W2021928266 @default.
- W2973013421 cites W2029171653 @default.
- W2973013421 cites W2043749411 @default.
- W2973013421 cites W2053559248 @default.
- W2973013421 cites W2055234679 @default.
- W2973013421 cites W2064167155 @default.
- W2973013421 cites W2071872757 @default.
- W2973013421 cites W2072581087 @default.
- W2973013421 cites W2078204079 @default.
- W2973013421 cites W2078711817 @default.
- W2973013421 cites W2080859877 @default.
- W2973013421 cites W2089484174 @default.
- W2973013421 cites W2096023955 @default.
- W2973013421 cites W2108970807 @default.
- W2973013421 cites W2113191728 @default.
- W2973013421 cites W2115706991 @default.
- W2973013421 cites W2117663940 @default.
- W2973013421 cites W2122000713 @default.
- W2973013421 cites W2123993001 @default.
- W2973013421 cites W2127888717 @default.
- W2973013421 cites W2134113810 @default.
- W2973013421 cites W2141460037 @default.
- W2973013421 cites W2156803951 @default.
- W2973013421 cites W2167822639 @default.
- W2973013421 cites W2169581455 @default.
- W2973013421 cites W2289691268 @default.
- W2973013421 cites W2343215024 @default.
- W2973013421 cites W2389980101 @default.
- W2973013421 cites W2486096428 @default.
- W2973013421 cites W2488934882 @default.
- W2973013421 cites W2608018571 @default.
- W2973013421 cites W2627924202 @default.
- W2973013421 cites W2787894218 @default.
- W2973013421 cites W2798585159 @default.
- W2973013421 cites W2885789276 @default.
- W2973013421 cites W4298876635 @default.
- W2973013421 doi "https://doi.org/10.1109/tsp.2019.2940122" @default.
- W2973013421 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6779157" @default.
- W2973013421 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31592214" @default.
- W2973013421 hasPublicationYear "2019" @default.
- W2973013421 type Work @default.
- W2973013421 sameAs 2973013421 @default.
- W2973013421 citedByCount "31" @default.
- W2973013421 countsByYear W29730134212020 @default.
- W2973013421 countsByYear W29730134212021 @default.
- W2973013421 countsByYear W29730134212022 @default.
- W2973013421 countsByYear W29730134212023 @default.
- W2973013421 crossrefType "journal-article" @default.
- W2973013421 hasAuthorship W2973013421A5019337064 @default.
- W2973013421 hasAuthorship W2973013421A5026758314 @default.
- W2973013421 hasAuthorship W2973013421A5067879588 @default.
- W2973013421 hasBestOaLocation W29730134211 @default.
- W2973013421 hasConcept C105795698 @default.
- W2973013421 hasConcept C111030470 @default.
- W2973013421 hasConcept C11413529 @default.
- W2973013421 hasConcept C114614502 @default.
- W2973013421 hasConcept C119857082 @default.
- W2973013421 hasConcept C121332964 @default.
- W2973013421 hasConcept C12267149 @default.
- W2973013421 hasConcept C149782125 @default.
- W2973013421 hasConcept C151406439 @default.
- W2973013421 hasConcept C153083717 @default.
- W2973013421 hasConcept C154945302 @default.
- W2973013421 hasConcept C158622935 @default.
- W2973013421 hasConcept C159877910 @default.
- W2973013421 hasConcept C163175372 @default.
- W2973013421 hasConcept C185429906 @default.
- W2973013421 hasConcept C33923547 @default.
- W2973013421 hasConcept C41008148 @default.
- W2973013421 hasConcept C62520636 @default.
- W2973013421 hasConcept C70518039 @default.
- W2973013421 hasConcept C74193536 @default.
- W2973013421 hasConceptScore W2973013421C105795698 @default.
- W2973013421 hasConceptScore W2973013421C111030470 @default.
- W2973013421 hasConceptScore W2973013421C11413529 @default.
- W2973013421 hasConceptScore W2973013421C114614502 @default.
- W2973013421 hasConceptScore W2973013421C119857082 @default.
- W2973013421 hasConceptScore W2973013421C121332964 @default.
- W2973013421 hasConceptScore W2973013421C12267149 @default.
- W2973013421 hasConceptScore W2973013421C149782125 @default.
- W2973013421 hasConceptScore W2973013421C151406439 @default.
- W2973013421 hasConceptScore W2973013421C153083717 @default.
- W2973013421 hasConceptScore W2973013421C154945302 @default.
- W2973013421 hasConceptScore W2973013421C158622935 @default.