Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973089438> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2973089438 abstract "Natural language processing (NLP) tasks tend to suffer from a paucity of suitably annotated training data, hence the recent success of transfer learning across a wide variety of them. The typical recipe involves: (i) training a deep, possibly bidirectional, neural network with an objective related to language modeling, for which training data is plentiful; and (ii) using the trained network to derive contextual representations that are far richer than standard linear word embeddings such as word2vec, and thus result in important gains. In this work, we wonder whether the opposite perspective is also true: can contextual representations trained for different NLP tasks improve language modeling itself? Since language models (LMs) are predominantly locally optimized, other NLP tasks may help them make better predictions based on the entire semantic fabric of a document. We test the performance of several types of pre-trained embeddings in neural LMs, and we investigate whether it is possible to make the LM more aware of global semantic information through embeddings pre-trained with a domain classification model. Initial experiments suggest that as long as the proper objective criterion is used during training, pre-trained embeddings are likely to be beneficial for neural language modeling." @default.
- W2973089438 created "2019-09-19" @default.
- W2973089438 creator A5027943182 @default.
- W2973089438 creator A5029549568 @default.
- W2973089438 date "2019-09-15" @default.
- W2973089438 modified "2023-10-16" @default.
- W2973089438 title "Reverse Transfer Learning: Can Word Embeddings Trained for Different NLP Tasks Improve Neural Language Models?" @default.
- W2973089438 doi "https://doi.org/10.21437/interspeech.2019-1332" @default.
- W2973089438 hasPublicationYear "2019" @default.
- W2973089438 type Work @default.
- W2973089438 sameAs 2973089438 @default.
- W2973089438 citedByCount "1" @default.
- W2973089438 countsByYear W29730894382021 @default.
- W2973089438 crossrefType "proceedings-article" @default.
- W2973089438 hasAuthorship W2973089438A5027943182 @default.
- W2973089438 hasAuthorship W2973089438A5029549568 @default.
- W2973089438 hasBestOaLocation W29730894382 @default.
- W2973089438 hasConcept C119857082 @default.
- W2973089438 hasConcept C12713177 @default.
- W2973089438 hasConcept C134306372 @default.
- W2973089438 hasConcept C136197465 @default.
- W2973089438 hasConcept C137293760 @default.
- W2973089438 hasConcept C138885662 @default.
- W2973089438 hasConcept C150899416 @default.
- W2973089438 hasConcept C154945302 @default.
- W2973089438 hasConcept C195324797 @default.
- W2973089438 hasConcept C204321447 @default.
- W2973089438 hasConcept C2776461190 @default.
- W2973089438 hasConcept C33923547 @default.
- W2973089438 hasConcept C36503486 @default.
- W2973089438 hasConcept C41008148 @default.
- W2973089438 hasConcept C41608201 @default.
- W2973089438 hasConcept C41895202 @default.
- W2973089438 hasConcept C50644808 @default.
- W2973089438 hasConcept C90805587 @default.
- W2973089438 hasConceptScore W2973089438C119857082 @default.
- W2973089438 hasConceptScore W2973089438C12713177 @default.
- W2973089438 hasConceptScore W2973089438C134306372 @default.
- W2973089438 hasConceptScore W2973089438C136197465 @default.
- W2973089438 hasConceptScore W2973089438C137293760 @default.
- W2973089438 hasConceptScore W2973089438C138885662 @default.
- W2973089438 hasConceptScore W2973089438C150899416 @default.
- W2973089438 hasConceptScore W2973089438C154945302 @default.
- W2973089438 hasConceptScore W2973089438C195324797 @default.
- W2973089438 hasConceptScore W2973089438C204321447 @default.
- W2973089438 hasConceptScore W2973089438C2776461190 @default.
- W2973089438 hasConceptScore W2973089438C33923547 @default.
- W2973089438 hasConceptScore W2973089438C36503486 @default.
- W2973089438 hasConceptScore W2973089438C41008148 @default.
- W2973089438 hasConceptScore W2973089438C41608201 @default.
- W2973089438 hasConceptScore W2973089438C41895202 @default.
- W2973089438 hasConceptScore W2973089438C50644808 @default.
- W2973089438 hasConceptScore W2973089438C90805587 @default.
- W2973089438 hasLocation W29730894381 @default.
- W2973089438 hasLocation W29730894382 @default.
- W2973089438 hasLocation W29730894383 @default.
- W2973089438 hasOpenAccess W2973089438 @default.
- W2973089438 hasPrimaryLocation W29730894381 @default.
- W2973089438 hasRelatedWork W10944326 @default.
- W2973089438 hasRelatedWork W10961682 @default.
- W2973089438 hasRelatedWork W13003916 @default.
- W2973089438 hasRelatedWork W13780460 @default.
- W2973089438 hasRelatedWork W14030788 @default.
- W2973089438 hasRelatedWork W14230040 @default.
- W2973089438 hasRelatedWork W17684 @default.
- W2973089438 hasRelatedWork W2867368 @default.
- W2973089438 hasRelatedWork W8021828 @default.
- W2973089438 hasRelatedWork W9266473 @default.
- W2973089438 isParatext "false" @default.
- W2973089438 isRetracted "false" @default.
- W2973089438 magId "2973089438" @default.
- W2973089438 workType "article" @default.