Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973096446> ?p ?o ?g. }
- W2973096446 abstract "While deep networks have been enormously successful over the last decade, they rely on flat-feature vector representations, which makes them unsuitable for richly structured domains such as those arising in applications like social network analysis. Such domains rely on relational representations to capture complex relationships between entities and their attributes. Thus, we consider the problem of learning neural networks for relational data. We distinguish ourselves from current approaches that rely on expert hand-coded rules by learning relational random-walk-based features to capture local structural interactions and the resulting network architecture. We further exploit parameter tying of the network weights of the resulting relational neural network, where instances of the same type share parameters. Our experimental results across several standard relational data sets demonstrate the effectiveness of the proposed approach over multiple neural net baselines as well as state-of-the-art statistical relational models." @default.
- W2973096446 created "2019-09-19" @default.
- W2973096446 creator A5025326221 @default.
- W2973096446 creator A5037636074 @default.
- W2973096446 creator A5047160337 @default.
- W2973096446 creator A5049799303 @default.
- W2973096446 creator A5064323671 @default.
- W2973096446 date "2019-08-28" @default.
- W2973096446 modified "2023-10-01" @default.
- W2973096446 title "Neural Networks for Relational Data" @default.
- W2973096446 cites W1512387364 @default.
- W2973096446 cites W1533230146 @default.
- W2973096446 cites W1545139845 @default.
- W2973096446 cites W1585529040 @default.
- W2973096446 cites W1596986901 @default.
- W2973096446 cites W1599188306 @default.
- W2973096446 cites W1899864426 @default.
- W2973096446 cites W1964155876 @default.
- W2973096446 cites W1977970897 @default.
- W2973096446 cites W1986767090 @default.
- W2973096446 cites W2021602734 @default.
- W2973096446 cites W2029249040 @default.
- W2973096446 cites W2065606385 @default.
- W2973096446 cites W2103925879 @default.
- W2973096446 cites W2116341502 @default.
- W2973096446 cites W2119831128 @default.
- W2973096446 cites W2126185296 @default.
- W2973096446 cites W2127426251 @default.
- W2973096446 cites W2127795553 @default.
- W2973096446 cites W2133403996 @default.
- W2973096446 cites W2142103257 @default.
- W2973096446 cites W2144429462 @default.
- W2973096446 cites W2146502635 @default.
- W2973096446 cites W2150475393 @default.
- W2973096446 cites W2158292827 @default.
- W2973096446 cites W2185448989 @default.
- W2973096446 cites W2189004000 @default.
- W2973096446 cites W2250521169 @default.
- W2973096446 cites W2283196293 @default.
- W2973096446 cites W2320648065 @default.
- W2973096446 cites W2395505673 @default.
- W2973096446 cites W24402856 @default.
- W2973096446 cites W2591724233 @default.
- W2973096446 cites W2604314403 @default.
- W2973096446 cites W2735667074 @default.
- W2973096446 cites W2769352243 @default.
- W2973096446 cites W2793712294 @default.
- W2973096446 cites W2962765587 @default.
- W2973096446 cites W2963055416 @default.
- W2973096446 cites W2963109792 @default.
- W2973096446 cites W2963572185 @default.
- W2973096446 cites W2963687836 @default.
- W2973096446 cites W2963920355 @default.
- W2973096446 cites W2964145825 @default.
- W2973096446 cites W2964152081 @default.
- W2973096446 cites W3104097132 @default.
- W2973096446 cites W880911330 @default.
- W2973096446 hasPublicationYear "2019" @default.
- W2973096446 type Work @default.
- W2973096446 sameAs 2973096446 @default.
- W2973096446 citedByCount "1" @default.
- W2973096446 countsByYear W29730964462021 @default.
- W2973096446 crossrefType "posted-content" @default.
- W2973096446 hasAuthorship W2973096446A5025326221 @default.
- W2973096446 hasAuthorship W2973096446A5037636074 @default.
- W2973096446 hasAuthorship W2973096446A5047160337 @default.
- W2973096446 hasAuthorship W2973096446A5049799303 @default.
- W2973096446 hasAuthorship W2973096446A5064323671 @default.
- W2973096446 hasConcept C111919701 @default.
- W2973096446 hasConcept C119857082 @default.
- W2973096446 hasConcept C124101348 @default.
- W2973096446 hasConcept C138885662 @default.
- W2973096446 hasConcept C154945302 @default.
- W2973096446 hasConcept C165696696 @default.
- W2973096446 hasConcept C177877439 @default.
- W2973096446 hasConcept C2776401178 @default.
- W2973096446 hasConcept C2780938662 @default.
- W2973096446 hasConcept C38652104 @default.
- W2973096446 hasConcept C40207289 @default.
- W2973096446 hasConcept C41008148 @default.
- W2973096446 hasConcept C41895202 @default.
- W2973096446 hasConcept C50644808 @default.
- W2973096446 hasConcept C5655090 @default.
- W2973096446 hasConcept C80444323 @default.
- W2973096446 hasConceptScore W2973096446C111919701 @default.
- W2973096446 hasConceptScore W2973096446C119857082 @default.
- W2973096446 hasConceptScore W2973096446C124101348 @default.
- W2973096446 hasConceptScore W2973096446C138885662 @default.
- W2973096446 hasConceptScore W2973096446C154945302 @default.
- W2973096446 hasConceptScore W2973096446C165696696 @default.
- W2973096446 hasConceptScore W2973096446C177877439 @default.
- W2973096446 hasConceptScore W2973096446C2776401178 @default.
- W2973096446 hasConceptScore W2973096446C2780938662 @default.
- W2973096446 hasConceptScore W2973096446C38652104 @default.
- W2973096446 hasConceptScore W2973096446C40207289 @default.
- W2973096446 hasConceptScore W2973096446C41008148 @default.
- W2973096446 hasConceptScore W2973096446C41895202 @default.
- W2973096446 hasConceptScore W2973096446C50644808 @default.
- W2973096446 hasConceptScore W2973096446C5655090 @default.
- W2973096446 hasConceptScore W2973096446C80444323 @default.