Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973122675> ?p ?o ?g. }
- W2973122675 endingPage "e0220623" @default.
- W2973122675 startingPage "e0220623" @default.
- W2973122675 abstract "Social media has become increasingly important for communication among young people. It is also often used to communicate suicidal ideation.To investigate the link between acute suicidality and language use as well as activity on Instagram.A total of 52 participants, aged on average around 16 years, who had posted pictures of non-suicidal self-injury on Instagram, and reported a lifetime history of suicidal ideation, were interviewed using Instagram messenger. Of those participants, 45.5% reported suicidal ideation on the day of the interview (acute suicidal ideation). Qualitative text analysis (software ATLAS.ti 7) was used to investigate experiences with expressions of active suicidal thoughts on Instagram. Quantitative text analysis of language use in the interviews and directly on Instagram (in picture captions) was performed using the Linguistic Inquiry and Word Count software. Language markers in the interviews and in picture captions, as well as activity on Instagram were added to regression analyses, in order to investigate predictors for current suicidal ideation.Most participants (80%) had come across expressions of active suicidal thoughts on Instagram and 25% had expressed active suicidal thoughts themselves. Participants with acute suicidal ideation used significantly more negative emotion words (Cohen's d = 0.66, 95% CI: 0.088-1.232) and words expressing overall affect (Cohen's d = 0.57, 95% CI: 0.001-1.138) in interviews. However, activity and language use on Instagram did not predict acute suicidality.While participants differed with regard to their use of language in interviews, differences in activity and language use on Instagram were not associated with acute suicidality. Other mechanisms of machine learning, like identifying picture content, might be more valuable." @default.
- W2973122675 created "2019-09-19" @default.
- W2973122675 creator A5009215209 @default.
- W2973122675 creator A5021149437 @default.
- W2973122675 creator A5030061325 @default.
- W2973122675 creator A5030568071 @default.
- W2973122675 creator A5036203240 @default.
- W2973122675 creator A5065582624 @default.
- W2973122675 date "2019-09-10" @default.
- W2973122675 modified "2023-10-18" @default.
- W2973122675 title "Can acute suicidality be predicted by Instagram data? Results from qualitative and quantitative language analyses" @default.
- W2973122675 cites W1922396948 @default.
- W2973122675 cites W1927029900 @default.
- W2973122675 cites W1938298890 @default.
- W2973122675 cites W1967825221 @default.
- W2973122675 cites W1988302818 @default.
- W2973122675 cites W2049994098 @default.
- W2973122675 cites W2053479646 @default.
- W2973122675 cites W2061585911 @default.
- W2973122675 cites W2099347751 @default.
- W2973122675 cites W2100772444 @default.
- W2973122675 cites W2118778378 @default.
- W2973122675 cites W2123817026 @default.
- W2973122675 cites W2129587854 @default.
- W2973122675 cites W2131027005 @default.
- W2973122675 cites W2140910804 @default.
- W2973122675 cites W2165343833 @default.
- W2973122675 cites W2250240141 @default.
- W2973122675 cites W2402700 @default.
- W2973122675 cites W2405042511 @default.
- W2973122675 cites W2407086192 @default.
- W2973122675 cites W2408088226 @default.
- W2973122675 cites W251680597 @default.
- W2973122675 cites W2524352516 @default.
- W2973122675 cites W2548906386 @default.
- W2973122675 cites W2554980225 @default.
- W2973122675 cites W2595251165 @default.
- W2973122675 cites W2748736658 @default.
- W2973122675 cites W2790016400 @default.
- W2973122675 cites W2792521421 @default.
- W2973122675 cites W2795715081 @default.
- W2973122675 cites W2805290746 @default.
- W2973122675 doi "https://doi.org/10.1371/journal.pone.0220623" @default.
- W2973122675 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6736249" @default.
- W2973122675 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31504042" @default.
- W2973122675 hasPublicationYear "2019" @default.
- W2973122675 type Work @default.
- W2973122675 sameAs 2973122675 @default.
- W2973122675 citedByCount "28" @default.
- W2973122675 countsByYear W29731226752020 @default.
- W2973122675 countsByYear W29731226752021 @default.
- W2973122675 countsByYear W29731226752022 @default.
- W2973122675 countsByYear W29731226752023 @default.
- W2973122675 crossrefType "journal-article" @default.
- W2973122675 hasAuthorship W2973122675A5009215209 @default.
- W2973122675 hasAuthorship W2973122675A5021149437 @default.
- W2973122675 hasAuthorship W2973122675A5030061325 @default.
- W2973122675 hasAuthorship W2973122675A5030568071 @default.
- W2973122675 hasAuthorship W2973122675A5036203240 @default.
- W2973122675 hasAuthorship W2973122675A5065582624 @default.
- W2973122675 hasBestOaLocation W29731226751 @default.
- W2973122675 hasConcept C118552586 @default.
- W2973122675 hasConcept C136764020 @default.
- W2973122675 hasConcept C144024400 @default.
- W2973122675 hasConcept C15744967 @default.
- W2973122675 hasConcept C166735990 @default.
- W2973122675 hasConcept C190248442 @default.
- W2973122675 hasConcept C190385971 @default.
- W2973122675 hasConcept C2776035688 @default.
- W2973122675 hasConcept C2776641880 @default.
- W2973122675 hasConcept C3017944768 @default.
- W2973122675 hasConcept C36289849 @default.
- W2973122675 hasConcept C41008148 @default.
- W2973122675 hasConcept C46312422 @default.
- W2973122675 hasConcept C518677369 @default.
- W2973122675 hasConcept C526869908 @default.
- W2973122675 hasConcept C545542383 @default.
- W2973122675 hasConcept C70410870 @default.
- W2973122675 hasConcept C71924100 @default.
- W2973122675 hasConceptScore W2973122675C118552586 @default.
- W2973122675 hasConceptScore W2973122675C136764020 @default.
- W2973122675 hasConceptScore W2973122675C144024400 @default.
- W2973122675 hasConceptScore W2973122675C15744967 @default.
- W2973122675 hasConceptScore W2973122675C166735990 @default.
- W2973122675 hasConceptScore W2973122675C190248442 @default.
- W2973122675 hasConceptScore W2973122675C190385971 @default.
- W2973122675 hasConceptScore W2973122675C2776035688 @default.
- W2973122675 hasConceptScore W2973122675C2776641880 @default.
- W2973122675 hasConceptScore W2973122675C3017944768 @default.
- W2973122675 hasConceptScore W2973122675C36289849 @default.
- W2973122675 hasConceptScore W2973122675C41008148 @default.
- W2973122675 hasConceptScore W2973122675C46312422 @default.
- W2973122675 hasConceptScore W2973122675C518677369 @default.
- W2973122675 hasConceptScore W2973122675C526869908 @default.
- W2973122675 hasConceptScore W2973122675C545542383 @default.
- W2973122675 hasConceptScore W2973122675C70410870 @default.
- W2973122675 hasConceptScore W2973122675C71924100 @default.
- W2973122675 hasFunder F4320320882 @default.