Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973191109> ?p ?o ?g. }
- W2973191109 abstract "Recently, recommender systems play a pivotal role in alleviating the problem of information overload. Latent factor models have been widely used for recommendation. Most existing latent factor models mainly utilize the interaction information between users and items, although some recently extended models utilize some auxiliary information to learn a unified latent factor for users and items. The unified latent factor only represents the characteristics of users and the properties of items from the aspect of purchase history. However, the characteristics of users and the properties of items may stem from different aspects, e.g., the brand-aspect and category-aspect of items. Moreover, the latent factor models usually use the shallow projection, which cannot capture the characteristics of users and items well. In this paper, we propose a Neural network based Aspect-level Collaborative Filtering model (NeuACF) to exploit different aspect latent factors. Through modelling the rich object properties and relations in recommender system as a heterogeneous information network, NeuACF first extracts different aspect-level similarity matrices of users and items respectively through different meta-paths, and then feeds an elaborately designed deep neural network with these matrices to learn aspect-level latent factors. Finally, the aspect-level latent factors are fused for the top-N recommendation. Moreover, to fuse information from different aspects more effectively, we further propose NeuACF++ to fuse aspect-level latent factors with self-attention mechanism. Extensive experiments on three real world datasets show that NeuACF and NeuACF++ significantly outperform both existing latent factor models and recent neural network models." @default.
- W2973191109 created "2019-09-19" @default.
- W2973191109 creator A5015326511 @default.
- W2973191109 creator A5031376838 @default.
- W2973191109 creator A5035708362 @default.
- W2973191109 creator A5036357902 @default.
- W2973191109 creator A5040367916 @default.
- W2973191109 creator A5051805730 @default.
- W2973191109 creator A5058010200 @default.
- W2973191109 date "2019-09-14" @default.
- W2973191109 modified "2023-09-26" @default.
- W2973191109 title "Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks" @default.
- W2973191109 cites W1514535095 @default.
- W2973191109 cites W1522301498 @default.
- W2973191109 cites W1533861849 @default.
- W2973191109 cites W1720514416 @default.
- W2973191109 cites W1967863517 @default.
- W2973191109 cites W1994389483 @default.
- W2973191109 cites W2010187764 @default.
- W2973191109 cites W2017710739 @default.
- W2973191109 cites W2024082504 @default.
- W2973191109 cites W2027731328 @default.
- W2973191109 cites W2029249040 @default.
- W2973191109 cites W2038585576 @default.
- W2973191109 cites W2042281163 @default.
- W2973191109 cites W2047729491 @default.
- W2973191109 cites W2054141820 @default.
- W2973191109 cites W2066459332 @default.
- W2973191109 cites W2083381833 @default.
- W2973191109 cites W2091002342 @default.
- W2973191109 cites W2099866409 @default.
- W2973191109 cites W2101409192 @default.
- W2973191109 cites W2119825970 @default.
- W2973191109 cites W21207210 @default.
- W2973191109 cites W2137245235 @default.
- W2973191109 cites W2137983211 @default.
- W2973191109 cites W2140310134 @default.
- W2973191109 cites W2145360759 @default.
- W2973191109 cites W2148933855 @default.
- W2973191109 cites W2157881433 @default.
- W2973191109 cites W2165949563 @default.
- W2973191109 cites W2187089797 @default.
- W2973191109 cites W2194775991 @default.
- W2973191109 cites W2219888463 @default.
- W2973191109 cites W2245341025 @default.
- W2973191109 cites W2271840356 @default.
- W2973191109 cites W2294283642 @default.
- W2973191109 cites W2302086703 @default.
- W2973191109 cites W2340502990 @default.
- W2973191109 cites W2475334473 @default.
- W2973191109 cites W2516131069 @default.
- W2973191109 cites W2573426660 @default.
- W2973191109 cites W2605350416 @default.
- W2973191109 cites W2615395371 @default.
- W2973191109 cites W2739273093 @default.
- W2973191109 cites W2740920897 @default.
- W2973191109 cites W2741954433 @default.
- W2973191109 cites W2743159750 @default.
- W2973191109 cites W2767724106 @default.
- W2973191109 cites W2783279085 @default.
- W2973191109 cites W2798785997 @default.
- W2973191109 cites W2891726376 @default.
- W2973191109 cites W2950178297 @default.
- W2973191109 cites W2951001079 @default.
- W2973191109 cites W2962712142 @default.
- W2973191109 cites W2963323306 @default.
- W2973191109 cites W2963341956 @default.
- W2973191109 cites W2963403868 @default.
- W2973191109 cites W2963655167 @default.
- W2973191109 cites W2963919031 @default.
- W2973191109 cites W2964308564 @default.
- W2973191109 cites W3098649723 @default.
- W2973191109 cites W3105303906 @default.
- W2973191109 cites W3146803896 @default.
- W2973191109 cites W39762900 @default.
- W2973191109 cites W2136040699 @default.
- W2973191109 doi "https://doi.org/10.48550/arxiv.1909.06627" @default.
- W2973191109 hasPublicationYear "2019" @default.
- W2973191109 type Work @default.
- W2973191109 sameAs 2973191109 @default.
- W2973191109 citedByCount "0" @default.
- W2973191109 crossrefType "posted-content" @default.
- W2973191109 hasAuthorship W2973191109A5015326511 @default.
- W2973191109 hasAuthorship W2973191109A5031376838 @default.
- W2973191109 hasAuthorship W2973191109A5035708362 @default.
- W2973191109 hasAuthorship W2973191109A5036357902 @default.
- W2973191109 hasAuthorship W2973191109A5040367916 @default.
- W2973191109 hasAuthorship W2973191109A5051805730 @default.
- W2973191109 hasAuthorship W2973191109A5058010200 @default.
- W2973191109 hasBestOaLocation W29731911091 @default.
- W2973191109 hasConcept C103278499 @default.
- W2973191109 hasConcept C10879293 @default.
- W2973191109 hasConcept C115961682 @default.
- W2973191109 hasConcept C119599485 @default.
- W2973191109 hasConcept C119857082 @default.
- W2973191109 hasConcept C124101348 @default.
- W2973191109 hasConcept C127413603 @default.
- W2973191109 hasConcept C136764020 @default.
- W2973191109 hasConcept C141353440 @default.
- W2973191109 hasConcept C154945302 @default.