Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973194842> ?p ?o ?g. }
- W2973194842 abstract "Abstract Interregional migration is a key issue affecting China's future pattern of urbanisation and regional development. In response to the phenomenon of network autocorrelation (NA) commonly found in migration networks, this paper combines eigenvector spatial filtering (ESF) with a negative binomial gravity model based on four‐stage panel data derived from censuses and population sampling surveys, and it analyses the factors that influenced China's interprovincial migration from 1995 to 2015. The results showed that (a) there is a significant spatial spillover effect in the interprovincial migration network. ESF can effectively capture NA in the data to reduce the model's estimation bias. The top 1.4% eigenvectors can extract high NA. (b) There is overdispersion in the interprovincial migration flows. A negative binomial regression gravity model is more appropriate for estimating the driving mechanism for migration than other models. (c) As with the initial variables of the gravity model, population size still exerts a great impact on both outflows and inflows. After considering the influence of NA, the effect of spatial distance is weakening. Additionally, economic, employment, social security, and educational factors are the main forces that are shaping the pattern of interprovincial migration. If the regional unemployment rate and average wages increase by 1%, the outflows and inflows increase by 0.351% and 0.502%, respectively; the coefficient of regional sex ratio at origin is also high, which has a close relationship with the migration motivations and gender differences in the employment market." @default.
- W2973194842 created "2019-09-19" @default.
- W2973194842 creator A5020880531 @default.
- W2973194842 creator A5042184004 @default.
- W2973194842 creator A5044545500 @default.
- W2973194842 creator A5091783616 @default.
- W2973194842 date "2019-09-11" @default.
- W2973194842 modified "2023-10-17" @default.
- W2973194842 title "Modelling interprovincial migration in China from 1995 to 2015 based on an eigenvector spatial filtering negative binomial model" @default.
- W2973194842 cites W1852054096 @default.
- W2973194842 cites W1899431436 @default.
- W2973194842 cites W1964449090 @default.
- W2973194842 cites W1973749534 @default.
- W2973194842 cites W1977495787 @default.
- W2973194842 cites W1979597490 @default.
- W2973194842 cites W1994922162 @default.
- W2973194842 cites W2004842128 @default.
- W2973194842 cites W2006465379 @default.
- W2973194842 cites W2018474251 @default.
- W2973194842 cites W2018727665 @default.
- W2973194842 cites W2031575926 @default.
- W2973194842 cites W2042851682 @default.
- W2973194842 cites W2046206407 @default.
- W2973194842 cites W2053207976 @default.
- W2973194842 cites W2058560977 @default.
- W2973194842 cites W2060091647 @default.
- W2973194842 cites W2069121981 @default.
- W2973194842 cites W2082014285 @default.
- W2973194842 cites W2104377888 @default.
- W2973194842 cites W2105717288 @default.
- W2973194842 cites W2107571404 @default.
- W2973194842 cites W2118049491 @default.
- W2973194842 cites W2125705164 @default.
- W2973194842 cites W2128469638 @default.
- W2973194842 cites W2171324606 @default.
- W2973194842 cites W2248252695 @default.
- W2973194842 cites W2273217203 @default.
- W2973194842 cites W2318951588 @default.
- W2973194842 cites W2326403741 @default.
- W2973194842 cites W2347163735 @default.
- W2973194842 cites W2415830636 @default.
- W2973194842 cites W2467447398 @default.
- W2973194842 cites W2468878838 @default.
- W2973194842 cites W2545558097 @default.
- W2973194842 cites W3021064873 @default.
- W2973194842 cites W3123980186 @default.
- W2973194842 cites W4236982631 @default.
- W2973194842 cites W4240765700 @default.
- W2973194842 cites W4243455742 @default.
- W2973194842 cites W4247460398 @default.
- W2973194842 doi "https://doi.org/10.1002/psp.2253" @default.
- W2973194842 hasPublicationYear "2019" @default.
- W2973194842 type Work @default.
- W2973194842 sameAs 2973194842 @default.
- W2973194842 citedByCount "27" @default.
- W2973194842 countsByYear W29731948422020 @default.
- W2973194842 countsByYear W29731948422021 @default.
- W2973194842 countsByYear W29731948422022 @default.
- W2973194842 countsByYear W29731948422023 @default.
- W2973194842 crossrefType "journal-article" @default.
- W2973194842 hasAuthorship W2973194842A5020880531 @default.
- W2973194842 hasAuthorship W2973194842A5042184004 @default.
- W2973194842 hasAuthorship W2973194842A5044545500 @default.
- W2973194842 hasAuthorship W2973194842A5091783616 @default.
- W2973194842 hasConcept C100906024 @default.
- W2973194842 hasConcept C105795698 @default.
- W2973194842 hasConcept C139719470 @default.
- W2973194842 hasConcept C144024400 @default.
- W2973194842 hasConcept C149782125 @default.
- W2973194842 hasConcept C149923435 @default.
- W2973194842 hasConcept C162324750 @default.
- W2973194842 hasConcept C166957645 @default.
- W2973194842 hasConcept C191935318 @default.
- W2973194842 hasConcept C199335787 @default.
- W2973194842 hasConcept C205649164 @default.
- W2973194842 hasConcept C26271046 @default.
- W2973194842 hasConcept C2908647359 @default.
- W2973194842 hasConcept C33923547 @default.
- W2973194842 hasConcept C39853841 @default.
- W2973194842 hasConcept C4249254 @default.
- W2973194842 hasConcept C50522688 @default.
- W2973194842 hasConcept C55527203 @default.
- W2973194842 hasConcept C87889798 @default.
- W2973194842 hasConceptScore W2973194842C100906024 @default.
- W2973194842 hasConceptScore W2973194842C105795698 @default.
- W2973194842 hasConceptScore W2973194842C139719470 @default.
- W2973194842 hasConceptScore W2973194842C144024400 @default.
- W2973194842 hasConceptScore W2973194842C149782125 @default.
- W2973194842 hasConceptScore W2973194842C149923435 @default.
- W2973194842 hasConceptScore W2973194842C162324750 @default.
- W2973194842 hasConceptScore W2973194842C166957645 @default.
- W2973194842 hasConceptScore W2973194842C191935318 @default.
- W2973194842 hasConceptScore W2973194842C199335787 @default.
- W2973194842 hasConceptScore W2973194842C205649164 @default.
- W2973194842 hasConceptScore W2973194842C26271046 @default.
- W2973194842 hasConceptScore W2973194842C2908647359 @default.
- W2973194842 hasConceptScore W2973194842C33923547 @default.
- W2973194842 hasConceptScore W2973194842C39853841 @default.
- W2973194842 hasConceptScore W2973194842C4249254 @default.
- W2973194842 hasConceptScore W2973194842C50522688 @default.