Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973194923> ?p ?o ?g. }
- W2973194923 endingPage "109385" @default.
- W2973194923 startingPage "109385" @default.
- W2973194923 abstract "In this study, bamboo carrier based lab scale compost biofilter was evaluated to treat synthetic waste air containing trichloroethylene (TCE) under continuous operation mode. The effect of inlet TCE concentration and gas flow rate and its removal was investigated. Maximum TCE removal efficiency was found to be 89% under optimum conditions of inlet 0.986 g/m3 TCE concentration corresponding to a loading rate of 43 g/m3 h and 0.042 m3/h gas flow rate at empty bed residence time (EBRT) of 2 min. For the first time, Artificial Neural Network (ANN) was applied to predict the performance of the compost biofilter in terms of TCE removal. The ANN model used a three layer feed forward based Levenberg-Marquardt algorithm, and its topology consisted of 3-25-1 as the optimum number for the three layers (input, hidden and output). An excellent match between the experimental and ANN predicted the value of TCE removal was obtained with a coefficient of determination (R2) value greater than 0.99 during the model training, validation, testing and overall. Furthermore, statistical analysis of the ANN model performance mediated its prediction accuracy of the bioreactor to treat TCE contaminated systems." @default.
- W2973194923 created "2019-09-19" @default.
- W2973194923 creator A5001003763 @default.
- W2973194923 creator A5038673075 @default.
- W2973194923 creator A5055947342 @default.
- W2973194923 date "2019-11-01" @default.
- W2973194923 modified "2023-09-24" @default.
- W2973194923 title "Experimental studies and neural network modeling of the removal of trichloroethylene vapor in a biofilter" @default.
- W2973194923 cites W1975921414 @default.
- W2973194923 cites W1978966995 @default.
- W2973194923 cites W1982828472 @default.
- W2973194923 cites W1998313200 @default.
- W2973194923 cites W1998874983 @default.
- W2973194923 cites W2020125671 @default.
- W2973194923 cites W2026696150 @default.
- W2973194923 cites W2028749934 @default.
- W2973194923 cites W2041490297 @default.
- W2973194923 cites W2042773912 @default.
- W2973194923 cites W2049801688 @default.
- W2973194923 cites W2069400819 @default.
- W2973194923 cites W2076323593 @default.
- W2973194923 cites W2082001236 @default.
- W2973194923 cites W2092687436 @default.
- W2973194923 cites W2094166107 @default.
- W2973194923 cites W2132412174 @default.
- W2973194923 cites W2150163713 @default.
- W2973194923 cites W2303428258 @default.
- W2973194923 cites W2335127354 @default.
- W2973194923 cites W2473293735 @default.
- W2973194923 cites W2566446113 @default.
- W2973194923 cites W2741452276 @default.
- W2973194923 cites W2752163425 @default.
- W2973194923 cites W2753861134 @default.
- W2973194923 cites W2754243181 @default.
- W2973194923 cites W2755085029 @default.
- W2973194923 cites W2774611150 @default.
- W2973194923 cites W2776419416 @default.
- W2973194923 cites W2792398315 @default.
- W2973194923 cites W2797259048 @default.
- W2973194923 cites W2810743723 @default.
- W2973194923 cites W2886078238 @default.
- W2973194923 cites W2886814035 @default.
- W2973194923 cites W2888420892 @default.
- W2973194923 cites W2901716324 @default.
- W2973194923 cites W2912183672 @default.
- W2973194923 cites W2939514969 @default.
- W2973194923 cites W2955560307 @default.
- W2973194923 doi "https://doi.org/10.1016/j.jenvman.2019.109385" @default.
- W2973194923 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31521920" @default.
- W2973194923 hasPublicationYear "2019" @default.
- W2973194923 type Work @default.
- W2973194923 sameAs 2973194923 @default.
- W2973194923 citedByCount "9" @default.
- W2973194923 countsByYear W29731949232020 @default.
- W2973194923 countsByYear W29731949232022 @default.
- W2973194923 countsByYear W29731949232023 @default.
- W2973194923 crossrefType "journal-article" @default.
- W2973194923 hasAuthorship W2973194923A5001003763 @default.
- W2973194923 hasAuthorship W2973194923A5038673075 @default.
- W2973194923 hasAuthorship W2973194923A5055947342 @default.
- W2973194923 hasConcept C106131492 @default.
- W2973194923 hasConcept C107872376 @default.
- W2973194923 hasConcept C119599485 @default.
- W2973194923 hasConcept C119857082 @default.
- W2973194923 hasConcept C121332964 @default.
- W2973194923 hasConcept C127413603 @default.
- W2973194923 hasConcept C172120300 @default.
- W2973194923 hasConcept C185592680 @default.
- W2973194923 hasConcept C186060115 @default.
- W2973194923 hasConcept C187320778 @default.
- W2973194923 hasConcept C201289731 @default.
- W2973194923 hasConcept C2775913793 @default.
- W2973194923 hasConcept C2779404209 @default.
- W2973194923 hasConcept C2780739461 @default.
- W2973194923 hasConcept C39432304 @default.
- W2973194923 hasConcept C41008148 @default.
- W2973194923 hasConcept C49671963 @default.
- W2973194923 hasConcept C50644808 @default.
- W2973194923 hasConcept C528095902 @default.
- W2973194923 hasConcept C548081761 @default.
- W2973194923 hasConcept C57879066 @default.
- W2973194923 hasConcept C78519656 @default.
- W2973194923 hasConcept C86803240 @default.
- W2973194923 hasConcept C87717796 @default.
- W2973194923 hasConceptScore W2973194923C106131492 @default.
- W2973194923 hasConceptScore W2973194923C107872376 @default.
- W2973194923 hasConceptScore W2973194923C119599485 @default.
- W2973194923 hasConceptScore W2973194923C119857082 @default.
- W2973194923 hasConceptScore W2973194923C121332964 @default.
- W2973194923 hasConceptScore W2973194923C127413603 @default.
- W2973194923 hasConceptScore W2973194923C172120300 @default.
- W2973194923 hasConceptScore W2973194923C185592680 @default.
- W2973194923 hasConceptScore W2973194923C186060115 @default.
- W2973194923 hasConceptScore W2973194923C187320778 @default.
- W2973194923 hasConceptScore W2973194923C201289731 @default.
- W2973194923 hasConceptScore W2973194923C2775913793 @default.
- W2973194923 hasConceptScore W2973194923C2779404209 @default.
- W2973194923 hasConceptScore W2973194923C2780739461 @default.