Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973197954> ?p ?o ?g. }
- W2973197954 endingPage "623" @default.
- W2973197954 startingPage "617" @default.
- W2973197954 abstract "Many studies have used Taiwan's National Health Insurance Research database (NHIRD) to conduct psychiatric research. However, the accuracy of the diagnostic codes for psychiatric disorders in NHIRD is not validated, and the symptom profiles are not available either. This study aimed to evaluate the accuracy of diagnostic codes and use text mining to extract symptom profile and functional impairment from electronic health records (EHRs) to overcome the above research limitations.A total of 500 discharge notes were randomly selected from a medical center's database. Three annotators reviewed the notes to establish gold standards. The accuracy of diagnostic codes for major psychiatric illness was evaluated. Text mining approaches were applied to extract depressive symptoms and function profiles and to identify patients with major depressive disorder.The accuracy of the diagnostic code for major depressive disorder, schizophrenia, and dementia was acceptable but that of bipolar disorder and minor depression was less satisfactory. The performance of text mining approach to recognize depressive symptoms is satisfactory; however, the recall for functional impairment is lower resulting in lower F-scores of 0.774-0.753. Using the text mining approach to identify major depressive disorder, the recall was 0.85 but precision was only 0.69.The accuracy of the diagnostic code for major depressive disorder in discharge notes was generally acceptable. This finding supports the utilization of psychiatric diagnoses in claims databases. The application of text mining to EHRs might help in overcoming current limitations in research using claims databases." @default.
- W2973197954 created "2019-09-19" @default.
- W2973197954 creator A5020878364 @default.
- W2973197954 creator A5022256663 @default.
- W2973197954 creator A5037362113 @default.
- W2973197954 creator A5067175625 @default.
- W2973197954 creator A5085965833 @default.
- W2973197954 date "2020-01-01" @default.
- W2973197954 modified "2023-10-17" @default.
- W2973197954 title "Using text mining to extract depressive symptoms and to validate the diagnosis of major depressive disorder from electronic health records" @default.
- W2973197954 cites W1958976034 @default.
- W2973197954 cites W1993743346 @default.
- W2973197954 cites W1993810702 @default.
- W2973197954 cites W2004910511 @default.
- W2973197954 cites W2037321007 @default.
- W2973197954 cites W2051206459 @default.
- W2973197954 cites W2053237747 @default.
- W2973197954 cites W2108844216 @default.
- W2973197954 cites W2120148577 @default.
- W2973197954 cites W2120539430 @default.
- W2973197954 cites W2137942961 @default.
- W2973197954 cites W2499256112 @default.
- W2973197954 cites W2518663325 @default.
- W2973197954 cites W2577646479 @default.
- W2973197954 cites W2604157665 @default.
- W2973197954 cites W2617083299 @default.
- W2973197954 cites W2790056169 @default.
- W2973197954 cites W2897021439 @default.
- W2973197954 cites W2913968412 @default.
- W2973197954 cites W2916835394 @default.
- W2973197954 cites W2964285624 @default.
- W2973197954 doi "https://doi.org/10.1016/j.jad.2019.09.044" @default.
- W2973197954 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31541973" @default.
- W2973197954 hasPublicationYear "2020" @default.
- W2973197954 type Work @default.
- W2973197954 sameAs 2973197954 @default.
- W2973197954 citedByCount "74" @default.
- W2973197954 countsByYear W29731979542020 @default.
- W2973197954 countsByYear W29731979542021 @default.
- W2973197954 countsByYear W29731979542022 @default.
- W2973197954 countsByYear W29731979542023 @default.
- W2973197954 crossrefType "journal-article" @default.
- W2973197954 hasAuthorship W2973197954A5020878364 @default.
- W2973197954 hasAuthorship W2973197954A5022256663 @default.
- W2973197954 hasAuthorship W2973197954A5037362113 @default.
- W2973197954 hasAuthorship W2973197954A5067175625 @default.
- W2973197954 hasAuthorship W2973197954A5085965833 @default.
- W2973197954 hasConcept C100660578 @default.
- W2973197954 hasConcept C118552586 @default.
- W2973197954 hasConcept C126322002 @default.
- W2973197954 hasConcept C126838900 @default.
- W2973197954 hasConcept C139719470 @default.
- W2973197954 hasConcept C142724271 @default.
- W2973197954 hasConcept C15744967 @default.
- W2973197954 hasConcept C162324750 @default.
- W2973197954 hasConcept C169900460 @default.
- W2973197954 hasConcept C17744445 @default.
- W2973197954 hasConcept C180747234 @default.
- W2973197954 hasConcept C195910791 @default.
- W2973197954 hasConcept C199539241 @default.
- W2973197954 hasConcept C2776174506 @default.
- W2973197954 hasConcept C2776412080 @default.
- W2973197954 hasConcept C2776867660 @default.
- W2973197954 hasConcept C2779134260 @default.
- W2973197954 hasConcept C2779473830 @default.
- W2973197954 hasConcept C2779483572 @default.
- W2973197954 hasConcept C2780051608 @default.
- W2973197954 hasConcept C2908647359 @default.
- W2973197954 hasConcept C3019858935 @default.
- W2973197954 hasConcept C40993552 @default.
- W2973197954 hasConcept C45827449 @default.
- W2973197954 hasConcept C534262118 @default.
- W2973197954 hasConcept C70410870 @default.
- W2973197954 hasConcept C71924100 @default.
- W2973197954 hasConcept C99454951 @default.
- W2973197954 hasConceptScore W2973197954C100660578 @default.
- W2973197954 hasConceptScore W2973197954C118552586 @default.
- W2973197954 hasConceptScore W2973197954C126322002 @default.
- W2973197954 hasConceptScore W2973197954C126838900 @default.
- W2973197954 hasConceptScore W2973197954C139719470 @default.
- W2973197954 hasConceptScore W2973197954C142724271 @default.
- W2973197954 hasConceptScore W2973197954C15744967 @default.
- W2973197954 hasConceptScore W2973197954C162324750 @default.
- W2973197954 hasConceptScore W2973197954C169900460 @default.
- W2973197954 hasConceptScore W2973197954C17744445 @default.
- W2973197954 hasConceptScore W2973197954C180747234 @default.
- W2973197954 hasConceptScore W2973197954C195910791 @default.
- W2973197954 hasConceptScore W2973197954C199539241 @default.
- W2973197954 hasConceptScore W2973197954C2776174506 @default.
- W2973197954 hasConceptScore W2973197954C2776412080 @default.
- W2973197954 hasConceptScore W2973197954C2776867660 @default.
- W2973197954 hasConceptScore W2973197954C2779134260 @default.
- W2973197954 hasConceptScore W2973197954C2779473830 @default.
- W2973197954 hasConceptScore W2973197954C2779483572 @default.
- W2973197954 hasConceptScore W2973197954C2780051608 @default.
- W2973197954 hasConceptScore W2973197954C2908647359 @default.
- W2973197954 hasConceptScore W2973197954C3019858935 @default.
- W2973197954 hasConceptScore W2973197954C40993552 @default.