Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973202280> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2973202280 abstract "Facial emotional expression is a nonverbal communication medium in human-human communication. Facial expression recognition (FER) is a significantly challenging task in computer vision. With the advent of deep neural networks, facial expression recognition has transitioned from lab-controlled settings to more neutral environments. However, deep neural networks (DNNs) suffer from overfitting the data and biases towards specific categorical distribution. The number of samples in each category is heavily imbalanced, and overall the number of samples is much less than the full number of samples representing all emotions. In this paper, we propose an end-to-end convolutional-self attention framework for classifying facial emotions. The convolutional neural network (CNN) layers can capture the spatial features in a given frame. Here we apply a convolutional-self-attention mechanism to obtain the spatiotemporal features and perform context modelling. The AffectNet database is used to validate the framework. The AffectNet database has a large number of image samples in the wild settings, which makes this database very challenging. The result shows a 30% improvement in accuracy from the CNN baseline." @default.
- W2973202280 created "2019-09-19" @default.
- W2973202280 creator A5006505402 @default.
- W2973202280 creator A5033198799 @default.
- W2973202280 creator A5085794127 @default.
- W2973202280 date "2019-07-01" @default.
- W2973202280 modified "2023-09-23" @default.
- W2973202280 title "An End-to-End Deep Neural Network for Facial Emotion Classification" @default.
- W2973202280 cites W1519333772 @default.
- W2973202280 cites W1928278792 @default.
- W2973202280 cites W1959806570 @default.
- W2973202280 cites W1974210421 @default.
- W2973202280 cites W2008887256 @default.
- W2973202280 cites W2040738616 @default.
- W2973202280 cites W2062632672 @default.
- W2973202280 cites W2068640973 @default.
- W2973202280 cites W2097117768 @default.
- W2973202280 cites W2109774206 @default.
- W2973202280 cites W2112796928 @default.
- W2973202280 cites W2139916508 @default.
- W2973202280 cites W2164623278 @default.
- W2973202280 cites W2193625546 @default.
- W2973202280 cites W2198512331 @default.
- W2973202280 cites W2217426128 @default.
- W2973202280 cites W2244142460 @default.
- W2973202280 cites W2246249023 @default.
- W2973202280 cites W2277498883 @default.
- W2973202280 cites W2413794162 @default.
- W2973202280 cites W2490049321 @default.
- W2973202280 cites W2532594835 @default.
- W2973202280 cites W2546875627 @default.
- W2973202280 cites W2796830519 @default.
- W2973202280 cites W2919115771 @default.
- W2973202280 cites W3102246728 @default.
- W2973202280 doi "https://doi.org/10.23919/fusion43075.2019.9011413" @default.
- W2973202280 hasPublicationYear "2019" @default.
- W2973202280 type Work @default.
- W2973202280 sameAs 2973202280 @default.
- W2973202280 citedByCount "0" @default.
- W2973202280 crossrefType "proceedings-article" @default.
- W2973202280 hasAuthorship W2973202280A5006505402 @default.
- W2973202280 hasAuthorship W2973202280A5033198799 @default.
- W2973202280 hasAuthorship W2973202280A5085794127 @default.
- W2973202280 hasBestOaLocation W29732022802 @default.
- W2973202280 hasConcept C108583219 @default.
- W2973202280 hasConcept C119857082 @default.
- W2973202280 hasConcept C151730666 @default.
- W2973202280 hasConcept C153180895 @default.
- W2973202280 hasConcept C154945302 @default.
- W2973202280 hasConcept C195704467 @default.
- W2973202280 hasConcept C22019652 @default.
- W2973202280 hasConcept C2779343474 @default.
- W2973202280 hasConcept C28490314 @default.
- W2973202280 hasConcept C41008148 @default.
- W2973202280 hasConcept C50644808 @default.
- W2973202280 hasConcept C5274069 @default.
- W2973202280 hasConcept C74296488 @default.
- W2973202280 hasConcept C81363708 @default.
- W2973202280 hasConcept C86803240 @default.
- W2973202280 hasConceptScore W2973202280C108583219 @default.
- W2973202280 hasConceptScore W2973202280C119857082 @default.
- W2973202280 hasConceptScore W2973202280C151730666 @default.
- W2973202280 hasConceptScore W2973202280C153180895 @default.
- W2973202280 hasConceptScore W2973202280C154945302 @default.
- W2973202280 hasConceptScore W2973202280C195704467 @default.
- W2973202280 hasConceptScore W2973202280C22019652 @default.
- W2973202280 hasConceptScore W2973202280C2779343474 @default.
- W2973202280 hasConceptScore W2973202280C28490314 @default.
- W2973202280 hasConceptScore W2973202280C41008148 @default.
- W2973202280 hasConceptScore W2973202280C50644808 @default.
- W2973202280 hasConceptScore W2973202280C5274069 @default.
- W2973202280 hasConceptScore W2973202280C74296488 @default.
- W2973202280 hasConceptScore W2973202280C81363708 @default.
- W2973202280 hasConceptScore W2973202280C86803240 @default.
- W2973202280 hasLocation W29732022801 @default.
- W2973202280 hasLocation W29732022802 @default.
- W2973202280 hasOpenAccess W2973202280 @default.
- W2973202280 hasPrimaryLocation W29732022801 @default.
- W2973202280 hasRelatedWork W2428997408 @default.
- W2973202280 hasRelatedWork W2738221750 @default.
- W2973202280 hasRelatedWork W2766123424 @default.
- W2973202280 hasRelatedWork W3099765033 @default.
- W2973202280 hasRelatedWork W4200442073 @default.
- W2973202280 hasRelatedWork W4214561993 @default.
- W2973202280 hasRelatedWork W4220755519 @default.
- W2973202280 hasRelatedWork W4220996320 @default.
- W2973202280 hasRelatedWork W4283701629 @default.
- W2973202280 hasRelatedWork W4285586943 @default.
- W2973202280 isParatext "false" @default.
- W2973202280 isRetracted "false" @default.
- W2973202280 magId "2973202280" @default.
- W2973202280 workType "article" @default.