Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973223165> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2973223165 endingPage "453" @default.
- W2973223165 startingPage "441" @default.
- W2973223165 abstract "Social applications such as Weibo have provided a quick platform for information propagation, which have led to an explosive propagation for hot topic. User sentiments about propagation information play an important role in propagation speed, which receive more and more attention from data mining field. In this paper, we propose an sentiment-based hot topics prediction model called PHT-US. PHT-US firstly classifies a large amount of text data in Weibo into different topics, then converts user sentiments and time factors into embedding vectors that are input into recurrent neural networks (both LSTM and GRU), and predicts whether the target topic could be a hot spot. Experiments on Sina Weibo show that PHT-US can effectively predict the hot topics in the future. Social applications such as Weibo provide a platform for quick information propagation, which leads to an explosive propagation for hot topics. User sentiments about propagation information play an important role in propagation speed, and thus receive more attention from data mining field. In this paper, a sentiment-based hot topics prediction model called PHT-US is proposed. Firstly a large amount of text data in Weibo was classified into different topics, and then user sentiments and time factors were converted into embedding vectors that are input into recurrent neural networks (both LSTM and GRU), and future hotspots were predicted. Experiments on Sina Weibo show that PHT-US can effectively predict hot topics in the future." @default.
- W2973223165 created "2019-09-19" @default.
- W2973223165 creator A5007263179 @default.
- W2973223165 creator A5014656305 @default.
- W2973223165 creator A5033041477 @default.
- W2973223165 creator A5063724348 @default.
- W2973223165 date "2019-01-01" @default.
- W2973223165 modified "2023-09-27" @default.
- W2973223165 title "Predicting the Hot Topics with User Sentiments" @default.
- W2973223165 cites W1219135468 @default.
- W2973223165 cites W1954020979 @default.
- W2973223165 cites W2026318959 @default.
- W2973223165 cites W2042034885 @default.
- W2973223165 cites W2064675550 @default.
- W2973223165 cites W2072315181 @default.
- W2973223165 cites W2124689612 @default.
- W2973223165 cites W2127267264 @default.
- W2973223165 cites W2128262401 @default.
- W2973223165 cites W2551441958 @default.
- W2973223165 cites W2579586109 @default.
- W2973223165 cites W2810784123 @default.
- W2973223165 cites W2951851909 @default.
- W2973223165 cites W3122000667 @default.
- W2973223165 doi "https://doi.org/10.1007/978-981-15-0118-0_34" @default.
- W2973223165 hasPublicationYear "2019" @default.
- W2973223165 type Work @default.
- W2973223165 sameAs 2973223165 @default.
- W2973223165 citedByCount "0" @default.
- W2973223165 crossrefType "book-chapter" @default.
- W2973223165 hasAuthorship W2973223165A5007263179 @default.
- W2973223165 hasAuthorship W2973223165A5014656305 @default.
- W2973223165 hasAuthorship W2973223165A5033041477 @default.
- W2973223165 hasAuthorship W2973223165A5063724348 @default.
- W2973223165 hasConcept C111919701 @default.
- W2973223165 hasConcept C119857082 @default.
- W2973223165 hasConcept C124101348 @default.
- W2973223165 hasConcept C147168706 @default.
- W2973223165 hasConcept C154238967 @default.
- W2973223165 hasConcept C154945302 @default.
- W2973223165 hasConcept C178790620 @default.
- W2973223165 hasConcept C185592680 @default.
- W2973223165 hasConcept C199672914 @default.
- W2973223165 hasConcept C202444582 @default.
- W2973223165 hasConcept C23123220 @default.
- W2973223165 hasConcept C33923547 @default.
- W2973223165 hasConcept C41008148 @default.
- W2973223165 hasConcept C41608201 @default.
- W2973223165 hasConcept C50644808 @default.
- W2973223165 hasConcept C66402592 @default.
- W2973223165 hasConcept C9652623 @default.
- W2973223165 hasConceptScore W2973223165C111919701 @default.
- W2973223165 hasConceptScore W2973223165C119857082 @default.
- W2973223165 hasConceptScore W2973223165C124101348 @default.
- W2973223165 hasConceptScore W2973223165C147168706 @default.
- W2973223165 hasConceptScore W2973223165C154238967 @default.
- W2973223165 hasConceptScore W2973223165C154945302 @default.
- W2973223165 hasConceptScore W2973223165C178790620 @default.
- W2973223165 hasConceptScore W2973223165C185592680 @default.
- W2973223165 hasConceptScore W2973223165C199672914 @default.
- W2973223165 hasConceptScore W2973223165C202444582 @default.
- W2973223165 hasConceptScore W2973223165C23123220 @default.
- W2973223165 hasConceptScore W2973223165C33923547 @default.
- W2973223165 hasConceptScore W2973223165C41008148 @default.
- W2973223165 hasConceptScore W2973223165C41608201 @default.
- W2973223165 hasConceptScore W2973223165C50644808 @default.
- W2973223165 hasConceptScore W2973223165C66402592 @default.
- W2973223165 hasConceptScore W2973223165C9652623 @default.
- W2973223165 hasLocation W29732231651 @default.
- W2973223165 hasOpenAccess W2973223165 @default.
- W2973223165 hasPrimaryLocation W29732231651 @default.
- W2973223165 hasRelatedWork W2029874876 @default.
- W2973223165 hasRelatedWork W2331142672 @default.
- W2973223165 hasRelatedWork W2375113368 @default.
- W2973223165 hasRelatedWork W2961085424 @default.
- W2973223165 hasRelatedWork W3022888993 @default.
- W2973223165 hasRelatedWork W3192794374 @default.
- W2973223165 hasRelatedWork W4200171482 @default.
- W2973223165 hasRelatedWork W4281386417 @default.
- W2973223165 hasRelatedWork W4327831767 @default.
- W2973223165 hasRelatedWork W4362613237 @default.
- W2973223165 isParatext "false" @default.
- W2973223165 isRetracted "false" @default.
- W2973223165 magId "2973223165" @default.
- W2973223165 workType "book-chapter" @default.