Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973235923> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2973235923 abstract "Let $up(r, t) = (a_1 a_2 dots a_r)^t$. We investigate the problem of determining the maximum possible integer $n(r, t)$ for which there exist $2t-1$ permutations $pi_1, pi_2, dots, pi_{2t-1}$ of $1, 2, dots, n(r, t)$ such that the concatenated sequence $pi_1 pi_2 dots pi_{2t-1}$ has no subsequence isomorphic to $up(r,t)$. This quantity has been used to obtain an upper bound on the maximum number of edges in $k$-quasiplanar graphs. It was proved by (Geneson, Prasad, and Tidor, Electronic Journal of Combinatorics, 2014) that $n(r, t) le (r-1)^{2^{2t-2}}$. We prove that $n(r,t) = Theta(r^{2t-1 choose t})$, where the constant in the bound depends only on $t$. Using our upper bound in the case $t = 2$, we also sharpen an upper bound of (Klazar, Integers, 2002), who proved that $Ex(up(r,2),n) < (2n+1)L$ where $L = Ex(up(r,2),K-1)+1$, $K = (r-1)^4 + 1$, and $Ex(u, n)$ denotes the extremal function for forbidden generalized Davenport-Schinzel sequences. We prove that $K = (r-1)^4 + 1$ in Klazar's bound can be replaced with $K = (r-1) binom{r}{2}+1$. We also prove a conjecture from (Geneson, Prasad, and Tidor, Electronic Journal of Combinatorics, 2014) by showing for $t geq 1$ that $Ex(a b c (a c b)^{t} a b c, n) = n 2^{frac{1}{t!}alpha(n)^{t} pm O(alpha(n)^{t-1})}$. In addition, we prove that $Ex(a b c a c b (a b c)^{t} a c b, n) = n 2^{frac{1}{(t+1)!}alpha(n)^{t+1} pm O(alpha(n)^{t})}$ for all $t geq 1$." @default.
- W2973235923 created "2019-09-26" @default.
- W2973235923 creator A5008588299 @default.
- W2973235923 creator A5016568974 @default.
- W2973235923 date "2019-09-20" @default.
- W2973235923 modified "2023-09-27" @default.
- W2973235923 title "Formations and generalized Davenport-Schinzel sequences" @default.
- W2973235923 cites W1444168583 @default.
- W2973235923 cites W1537453950 @default.
- W2973235923 cites W1768195728 @default.
- W2973235923 cites W1779791987 @default.
- W2973235923 cites W1918308715 @default.
- W2973235923 cites W1926319616 @default.
- W2973235923 cites W1945239439 @default.
- W2973235923 cites W1979382580 @default.
- W2973235923 cites W1992585484 @default.
- W2973235923 cites W1998230386 @default.
- W2973235923 cites W2028747718 @default.
- W2973235923 cites W2058473382 @default.
- W2973235923 cites W2060876340 @default.
- W2973235923 cites W2066821207 @default.
- W2973235923 cites W2091015960 @default.
- W2973235923 cites W2124786036 @default.
- W2973235923 cites W2151003636 @default.
- W2973235923 cites W2320799707 @default.
- W2973235923 cites W2570341361 @default.
- W2973235923 cites W2917818269 @default.
- W2973235923 cites W2963380013 @default.
- W2973235923 cites W2963679580 @default.
- W2973235923 cites W2963843359 @default.
- W2973235923 cites W2995783957 @default.
- W2973235923 cites W3011816441 @default.
- W2973235923 cites W778619365 @default.
- W2973235923 hasPublicationYear "2019" @default.
- W2973235923 type Work @default.
- W2973235923 sameAs 2973235923 @default.
- W2973235923 citedByCount "2" @default.
- W2973235923 countsByYear W29732359232019 @default.
- W2973235923 countsByYear W29732359232021 @default.
- W2973235923 crossrefType "posted-content" @default.
- W2973235923 hasAuthorship W2973235923A5008588299 @default.
- W2973235923 hasAuthorship W2973235923A5016568974 @default.
- W2973235923 hasConcept C114614502 @default.
- W2973235923 hasConcept C134306372 @default.
- W2973235923 hasConcept C137877099 @default.
- W2973235923 hasConcept C199360897 @default.
- W2973235923 hasConcept C204911207 @default.
- W2973235923 hasConcept C2780990831 @default.
- W2973235923 hasConcept C33923547 @default.
- W2973235923 hasConcept C34388435 @default.
- W2973235923 hasConcept C41008148 @default.
- W2973235923 hasConcept C61994974 @default.
- W2973235923 hasConcept C77553402 @default.
- W2973235923 hasConcept C97137487 @default.
- W2973235923 hasConceptScore W2973235923C114614502 @default.
- W2973235923 hasConceptScore W2973235923C134306372 @default.
- W2973235923 hasConceptScore W2973235923C137877099 @default.
- W2973235923 hasConceptScore W2973235923C199360897 @default.
- W2973235923 hasConceptScore W2973235923C204911207 @default.
- W2973235923 hasConceptScore W2973235923C2780990831 @default.
- W2973235923 hasConceptScore W2973235923C33923547 @default.
- W2973235923 hasConceptScore W2973235923C34388435 @default.
- W2973235923 hasConceptScore W2973235923C41008148 @default.
- W2973235923 hasConceptScore W2973235923C61994974 @default.
- W2973235923 hasConceptScore W2973235923C77553402 @default.
- W2973235923 hasConceptScore W2973235923C97137487 @default.
- W2973235923 hasLocation W29732359231 @default.
- W2973235923 hasOpenAccess W2973235923 @default.
- W2973235923 hasPrimaryLocation W29732359231 @default.
- W2973235923 hasRelatedWork W2027443207 @default.
- W2973235923 hasRelatedWork W2148948668 @default.
- W2973235923 hasRelatedWork W2195042389 @default.
- W2973235923 hasRelatedWork W2314534953 @default.
- W2973235923 hasRelatedWork W2352236556 @default.
- W2973235923 hasRelatedWork W2564111101 @default.
- W2973235923 hasRelatedWork W2747950221 @default.
- W2973235923 hasRelatedWork W2776140089 @default.
- W2973235923 hasRelatedWork W2795342113 @default.
- W2973235923 hasRelatedWork W2809898851 @default.
- W2973235923 hasRelatedWork W2898308317 @default.
- W2973235923 hasRelatedWork W2901512829 @default.
- W2973235923 hasRelatedWork W2952239795 @default.
- W2973235923 hasRelatedWork W2952417393 @default.
- W2973235923 hasRelatedWork W2962710831 @default.
- W2973235923 hasRelatedWork W2976119392 @default.
- W2973235923 hasRelatedWork W2997132820 @default.
- W2973235923 hasRelatedWork W3033498448 @default.
- W2973235923 hasRelatedWork W3045932380 @default.
- W2973235923 hasRelatedWork W3046011717 @default.
- W2973235923 isParatext "false" @default.
- W2973235923 isRetracted "false" @default.
- W2973235923 magId "2973235923" @default.
- W2973235923 workType "article" @default.