Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973405785> ?p ?o ?g. }
- W2973405785 endingPage "135719" @default.
- W2973405785 startingPage "135703" @default.
- W2973405785 abstract "Linear Temporal Logic (LTL) Model Checking (MC) has been applied to many fields. However, the state explosion problem and the exponentially computational complexity restrict the further applications of LTL model checking. A lot of approaches have been presented to address these problems. And they work well. However, the essential issue has not been resolved due to the limitation of inherent complexity of the problem. As a result, the running time of LTL model checking algorithms will be inacceptable if a LTL formula is too long. To this end, this study tries to seek an acceptable approximate solution for LTL model checking by introducing the Machine Learning (ML) technique. And a method for predicting LTL model checking results is proposed, using the several ML algorithms including Boosted Tree (BT), Random Forest (RF), Decision tree (DT) or Logistic Regression (LR), respectively. First, for a number of Kripke structures and LTL formulas, a data set A containing model checking results is obtained, using one of the existing LTL model checking algorithm. Second, the LTL model checking problem can be induced to a binary classification problem of machine learning. In other words, some records in A form a training set for the given machine learning algorithm, where formulas and kripke structures are the two features, and model checking results are the one label. On the basis of it, a ML model M is obtained to predict the results of LTL model checking. As a result, an approximate LTL model checking technique occurs. The experiments show that the new method has the similar max accuracy with the state of the art algorithm in the classical LTL model checking technique, while the average efficiency of the former method is at most 6.3 million times higher than that of the latter algorithms, if the length of each of LTL formulas equals to 500. These results indicate that the new method can quickly and accurately determine LTL model checking result for a given Kripke structure and a given long LTL formula, since the new method avoids the famous state explosion problem." @default.
- W2973405785 created "2019-09-26" @default.
- W2973405785 creator A5011747432 @default.
- W2973405785 creator A5047298341 @default.
- W2973405785 creator A5078165151 @default.
- W2973405785 date "2019-01-01" @default.
- W2973405785 modified "2023-10-16" @default.
- W2973405785 title "LTL Model Checking Based on Binary Classification of Machine Learning" @default.
- W2973405785 cites W1510183314 @default.
- W2973405785 cites W1510378954 @default.
- W2973405785 cites W1511164163 @default.
- W2973405785 cites W1536007121 @default.
- W2973405785 cites W1556387789 @default.
- W2973405785 cites W1596765746 @default.
- W2973405785 cites W169260651 @default.
- W2973405785 cites W1969558401 @default.
- W2973405785 cites W1993112505 @default.
- W2973405785 cites W1993536119 @default.
- W2973405785 cites W1999061091 @default.
- W2973405785 cites W2000138546 @default.
- W2973405785 cites W2000397583 @default.
- W2973405785 cites W2015307578 @default.
- W2973405785 cites W2026489387 @default.
- W2973405785 cites W2034822942 @default.
- W2973405785 cites W2041244869 @default.
- W2973405785 cites W2048355938 @default.
- W2973405785 cites W2054382008 @default.
- W2973405785 cites W2094369345 @default.
- W2973405785 cites W2099120582 @default.
- W2973405785 cites W2101324577 @default.
- W2973405785 cites W2104696223 @default.
- W2973405785 cites W2115082908 @default.
- W2973405785 cites W2117203466 @default.
- W2973405785 cites W2124712926 @default.
- W2973405785 cites W2140889182 @default.
- W2973405785 cites W2147233820 @default.
- W2973405785 cites W2164820644 @default.
- W2973405785 cites W2296665064 @default.
- W2973405785 cites W2394982463 @default.
- W2973405785 cites W2498324117 @default.
- W2973405785 cites W2613426128 @default.
- W2973405785 cites W2625447049 @default.
- W2973405785 cites W2756274675 @default.
- W2973405785 cites W2783033253 @default.
- W2973405785 cites W2796919988 @default.
- W2973405785 cites W2797516081 @default.
- W2973405785 cites W2810313326 @default.
- W2973405785 cites W2891539545 @default.
- W2973405785 cites W2903210375 @default.
- W2973405785 cites W2951076535 @default.
- W2973405785 cites W4233384841 @default.
- W2973405785 cites W581820307 @default.
- W2973405785 cites W6586136 @default.
- W2973405785 cites W79064388 @default.
- W2973405785 cites W2170424326 @default.
- W2973405785 doi "https://doi.org/10.1109/access.2019.2942762" @default.
- W2973405785 hasPublicationYear "2019" @default.
- W2973405785 type Work @default.
- W2973405785 sameAs 2973405785 @default.
- W2973405785 citedByCount "8" @default.
- W2973405785 countsByYear W29734057852021 @default.
- W2973405785 countsByYear W29734057852022 @default.
- W2973405785 countsByYear W29734057852023 @default.
- W2973405785 crossrefType "journal-article" @default.
- W2973405785 hasAuthorship W2973405785A5011747432 @default.
- W2973405785 hasAuthorship W2973405785A5047298341 @default.
- W2973405785 hasAuthorship W2973405785A5078165151 @default.
- W2973405785 hasBestOaLocation W29734057851 @default.
- W2973405785 hasConcept C110251889 @default.
- W2973405785 hasConcept C11413529 @default.
- W2973405785 hasConcept C119857082 @default.
- W2973405785 hasConcept C154945302 @default.
- W2973405785 hasConcept C161913894 @default.
- W2973405785 hasConcept C177264268 @default.
- W2973405785 hasConcept C198008173 @default.
- W2973405785 hasConcept C199360897 @default.
- W2973405785 hasConcept C25016198 @default.
- W2973405785 hasConcept C30888246 @default.
- W2973405785 hasConcept C3309909 @default.
- W2973405785 hasConcept C41008148 @default.
- W2973405785 hasConcept C4777664 @default.
- W2973405785 hasConcept C80444323 @default.
- W2973405785 hasConcept C84525736 @default.
- W2973405785 hasConceptScore W2973405785C110251889 @default.
- W2973405785 hasConceptScore W2973405785C11413529 @default.
- W2973405785 hasConceptScore W2973405785C119857082 @default.
- W2973405785 hasConceptScore W2973405785C154945302 @default.
- W2973405785 hasConceptScore W2973405785C161913894 @default.
- W2973405785 hasConceptScore W2973405785C177264268 @default.
- W2973405785 hasConceptScore W2973405785C198008173 @default.
- W2973405785 hasConceptScore W2973405785C199360897 @default.
- W2973405785 hasConceptScore W2973405785C25016198 @default.
- W2973405785 hasConceptScore W2973405785C30888246 @default.
- W2973405785 hasConceptScore W2973405785C3309909 @default.
- W2973405785 hasConceptScore W2973405785C41008148 @default.
- W2973405785 hasConceptScore W2973405785C4777664 @default.
- W2973405785 hasConceptScore W2973405785C80444323 @default.
- W2973405785 hasConceptScore W2973405785C84525736 @default.