Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973456064> ?p ?o ?g. }
- W2973456064 abstract "Abstract Borehole-log data acquisition accounts for a significant proportion of exploration, appraisal and field development costs. As part of Shell technical competitive scoping, there is an ambition to increase formation evaluation value of information by leveraging drilling and mudlogging data, which traditionally often used in petrophysical or reservoir modelling workflow. Often data acquisition and formation evaluation for the shallow hole sections (or overburden) are incomplete. Logging-while-drilling (LWD) and/or wireline log data coverage is restricted to mostly GR, RES and mud log information and the quality of the logs varied depending on the vendor companies or year of the acquisition. In addition, reservoir characterization logs typically covered only the final few thousand feet of the wellbore thus preventing a full quantitative petrophysical, geomechanical, geological correlation and geophysical modelling, which caused limited understanding of overburden sections in the drilled locations and geohazards risls assessment. Use of neural networks (NN) to predict logs is a well-known in Petrophysic discipline and has often used technology since more than last 10 years. However, the NN model seldon utilized the drilling and mudlogging data (due to lack of calibration and inconsistency) and up until now the industry usually used to predict a synthetic log or fill gaps in a log. With the collaboration between Shell and Quantico, the project team develops a plug-in based on a novel artificial intelligence (AI) logs workflow using neural-network to generate synthetic/AI logs from offset wells logs data, drilling and mudlogging data. The AI logs workflow is trialled in Shell Trinidad & Tobago and Gulf of Mexicooffshore fields. The results of this study indicate the neural network model provides data comparable to that from conventional logging tools over the study area. When comparing the resulting synthetic logs with measured logs, the range of variance is within the expected variance of repeat runs of a conventional logging tool. Cross plots of synthetic versus measured logs indicate a high density of points centralized about the one-to-one line, indicating a robust model with no systematic biases. The QLog approach provides several potential benefits. These include a common framework for producing DTC, DTS, NEU and RHOB logs in one pass from a standard set of drilling, LWD and survey parameters. Since this framework ties together drilling, formation evaluation and geophysical data, the artificial intelligence enhances and possibly enables other petrophysical/QI/rock property analysis that including seismic inversion, high resolution logs, log QC/editing, real-time LWD, drilling optimization and others." @default.
- W2973456064 created "2019-09-26" @default.
- W2973456064 creator A5000598629 @default.
- W2973456064 creator A5025511149 @default.
- W2973456064 creator A5028082438 @default.
- W2973456064 creator A5033203835 @default.
- W2973456064 creator A5038307068 @default.
- W2973456064 creator A5053871726 @default.
- W2973456064 creator A5077309119 @default.
- W2973456064 creator A5088331579 @default.
- W2973456064 date "2019-09-23" @default.
- W2973456064 modified "2023-10-16" @default.
- W2973456064 title "Artificial Intelligent Logs for Formation Evaluation Using Case Studies in Gulf of Mexico and Trinidad & Tobago" @default.
- W2973456064 cites W1531857721 @default.
- W2973456064 cites W1608292140 @default.
- W2973456064 cites W1825077972 @default.
- W2973456064 cites W1970375483 @default.
- W2973456064 cites W2007381961 @default.
- W2973456064 cites W2014239139 @default.
- W2973456064 cites W2092395542 @default.
- W2973456064 cites W2092678804 @default.
- W2973456064 cites W2117812871 @default.
- W2973456064 cites W2183478160 @default.
- W2973456064 cites W2253221144 @default.
- W2973456064 cites W2470801339 @default.
- W2973456064 cites W2495647964 @default.
- W2973456064 cites W2515312794 @default.
- W2973456064 cites W2597425102 @default.
- W2973456064 cites W2784215213 @default.
- W2973456064 doi "https://doi.org/10.2118/196064-ms" @default.
- W2973456064 hasPublicationYear "2019" @default.
- W2973456064 type Work @default.
- W2973456064 sameAs 2973456064 @default.
- W2973456064 citedByCount "7" @default.
- W2973456064 countsByYear W29734560642020 @default.
- W2973456064 countsByYear W29734560642021 @default.
- W2973456064 countsByYear W29734560642022 @default.
- W2973456064 crossrefType "proceedings-article" @default.
- W2973456064 hasAuthorship W2973456064A5000598629 @default.
- W2973456064 hasAuthorship W2973456064A5025511149 @default.
- W2973456064 hasAuthorship W2973456064A5028082438 @default.
- W2973456064 hasAuthorship W2973456064A5033203835 @default.
- W2973456064 hasAuthorship W2973456064A5038307068 @default.
- W2973456064 hasAuthorship W2973456064A5053871726 @default.
- W2973456064 hasAuthorship W2973456064A5077309119 @default.
- W2973456064 hasAuthorship W2973456064A5088331579 @default.
- W2973456064 hasConcept C127313418 @default.
- W2973456064 hasConcept C127413603 @default.
- W2973456064 hasConcept C150560799 @default.
- W2973456064 hasConcept C154945302 @default.
- W2973456064 hasConcept C16674752 @default.
- W2973456064 hasConcept C177212765 @default.
- W2973456064 hasConcept C187320778 @default.
- W2973456064 hasConcept C25197100 @default.
- W2973456064 hasConcept C2776951270 @default.
- W2973456064 hasConcept C2777201227 @default.
- W2973456064 hasConcept C2781101838 @default.
- W2973456064 hasConcept C35817400 @default.
- W2973456064 hasConcept C41008148 @default.
- W2973456064 hasConcept C46293882 @default.
- W2973456064 hasConcept C46890581 @default.
- W2973456064 hasConcept C50644808 @default.
- W2973456064 hasConcept C555944384 @default.
- W2973456064 hasConcept C6648577 @default.
- W2973456064 hasConcept C76155785 @default.
- W2973456064 hasConcept C77088390 @default.
- W2973456064 hasConcept C78519656 @default.
- W2973456064 hasConcept C78762247 @default.
- W2973456064 hasConceptScore W2973456064C127313418 @default.
- W2973456064 hasConceptScore W2973456064C127413603 @default.
- W2973456064 hasConceptScore W2973456064C150560799 @default.
- W2973456064 hasConceptScore W2973456064C154945302 @default.
- W2973456064 hasConceptScore W2973456064C16674752 @default.
- W2973456064 hasConceptScore W2973456064C177212765 @default.
- W2973456064 hasConceptScore W2973456064C187320778 @default.
- W2973456064 hasConceptScore W2973456064C25197100 @default.
- W2973456064 hasConceptScore W2973456064C2776951270 @default.
- W2973456064 hasConceptScore W2973456064C2777201227 @default.
- W2973456064 hasConceptScore W2973456064C2781101838 @default.
- W2973456064 hasConceptScore W2973456064C35817400 @default.
- W2973456064 hasConceptScore W2973456064C41008148 @default.
- W2973456064 hasConceptScore W2973456064C46293882 @default.
- W2973456064 hasConceptScore W2973456064C46890581 @default.
- W2973456064 hasConceptScore W2973456064C50644808 @default.
- W2973456064 hasConceptScore W2973456064C555944384 @default.
- W2973456064 hasConceptScore W2973456064C6648577 @default.
- W2973456064 hasConceptScore W2973456064C76155785 @default.
- W2973456064 hasConceptScore W2973456064C77088390 @default.
- W2973456064 hasConceptScore W2973456064C78519656 @default.
- W2973456064 hasConceptScore W2973456064C78762247 @default.
- W2973456064 hasLocation W29734560641 @default.
- W2973456064 hasOpenAccess W2973456064 @default.
- W2973456064 hasPrimaryLocation W29734560641 @default.
- W2973456064 hasRelatedWork W12820000 @default.
- W2973456064 hasRelatedWork W14983197 @default.
- W2973456064 hasRelatedWork W21055029 @default.
- W2973456064 hasRelatedWork W44658932 @default.
- W2973456064 hasRelatedWork W4767906 @default.
- W2973456064 hasRelatedWork W50244389 @default.
- W2973456064 hasRelatedWork W51957373 @default.