Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973522071> ?p ?o ?g. }
- W2973522071 endingPage "467" @default.
- W2973522071 startingPage "443" @default.
- W2973522071 abstract "Primitive and mafic lavas erupted in the Cascades arc of western North America demonstrate significant patterns of along-arc heterogeneity. Such compositional diversity may be the result of differences in mantle melting processes, subduction geometry, regional tectonics, or compositions of the slab, mantle, or overlying lithosphere. Previous authors have partitioned the arc into four geochemically distinct segments in order to assess the importance and relative roles of these processes (Schmidt et al., 2008). However, despite the significant amount of data available from the Cascades arc, no previous study has utilized a statistical approach on a comprehensive dataset to address arc segmentation and its petrogenetic causes. To better characterize the heterogeneity of the entire arc, we first compiled >235,000 isotopic, major, and trace element analyses (glass and whole rock) from over 12,000 samples, which range in composition from mafic to felsic, and include data from arc-front and back-arc centers. We focus on the 2236 mafic arc-front samples in our compilation in order to assess potential causes for along-arc differences in less differentiated magmas, and to potentially lessen any effect of crustal assimilation. To minimize inherent sampling bias – the effect where well-studied volcanoes heavily weight conclusions – we use a weighted bootstrap Monte Carlo approach in which the probability of a sample being selected to the posterior distribution was inversely proportional to the number of samples within its 0.25° latitude bin. This methodology produces a more uniform and unbiased distribution from which we can assess regional, rather than local, compositional variability in the Cascades arc. Using a multivariate statistical approach, we demonstrate that the four segments designated by Schmidt et al. (2008) are, in fact, statistically distinct. However, using a modified hierarchical clustering mechanism, we objectively divide the arc into six regions which have geochemical differences that are up to 6.3 times more statistically significant than in the previous scheme. Our new, more robust segmentation scheme includes the Garibaldi (49.75–51°N), Baker (48.5–49.75°N), Glacier Peak (47.75–48.5°N), Washington (45.75–47.75°N), Graben (44.25–45.75°N), and South (41.25–44.25°N) Segments. By partitioning the arc into the most statistically distinct segments and calculating unbiased mean compositions for each, we explore the petrogenetic causes for the regional-scale differences in primitive lava compositions. These bootstrapped mean data indicate significant inter-segment differences in fluid-flux signature, mantle fertility, and depth and degree of melting. We suggest that differences in subduction geometry, regional tectonics and mantle heterogeneity are the primary causes for these intra-arc differences." @default.
- W2973522071 created "2019-09-26" @default.
- W2973522071 creator A5067292268 @default.
- W2973522071 creator A5076856172 @default.
- W2973522071 date "2019-11-01" @default.
- W2973522071 modified "2023-10-16" @default.
- W2973522071 title "Statistics and segmentation: Using Big Data to assess Cascades arc compositional variability" @default.
- W2973522071 cites W1508412693 @default.
- W2973522071 cites W1636995053 @default.
- W2973522071 cites W1890073303 @default.
- W2973522071 cites W1900036548 @default.
- W2973522071 cites W1923599091 @default.
- W2973522071 cites W1944248902 @default.
- W2973522071 cites W1965913526 @default.
- W2973522071 cites W1966013657 @default.
- W2973522071 cites W1967386545 @default.
- W2973522071 cites W1967639437 @default.
- W2973522071 cites W1979705656 @default.
- W2973522071 cites W1982075335 @default.
- W2973522071 cites W1987046510 @default.
- W2973522071 cites W1987164095 @default.
- W2973522071 cites W1987865974 @default.
- W2973522071 cites W1990814837 @default.
- W2973522071 cites W1995564745 @default.
- W2973522071 cites W1996015042 @default.
- W2973522071 cites W1997142214 @default.
- W2973522071 cites W1998434106 @default.
- W2973522071 cites W2000433918 @default.
- W2973522071 cites W2001266646 @default.
- W2973522071 cites W2001860992 @default.
- W2973522071 cites W2006695708 @default.
- W2973522071 cites W2007278189 @default.
- W2973522071 cites W2008456126 @default.
- W2973522071 cites W2013857416 @default.
- W2973522071 cites W2021913724 @default.
- W2973522071 cites W2035283420 @default.
- W2973522071 cites W2035347372 @default.
- W2973522071 cites W2036605653 @default.
- W2973522071 cites W2041912347 @default.
- W2973522071 cites W2042447391 @default.
- W2973522071 cites W2044653125 @default.
- W2973522071 cites W2050474528 @default.
- W2973522071 cites W2051878750 @default.
- W2973522071 cites W2054702854 @default.
- W2973522071 cites W2057967853 @default.
- W2973522071 cites W2058035628 @default.
- W2973522071 cites W2064499777 @default.
- W2973522071 cites W2064673230 @default.
- W2973522071 cites W2068897627 @default.
- W2973522071 cites W2071324209 @default.
- W2973522071 cites W2074579635 @default.
- W2973522071 cites W2083355627 @default.
- W2973522071 cites W2084600133 @default.
- W2973522071 cites W2084995136 @default.
- W2973522071 cites W2089580673 @default.
- W2973522071 cites W2093854966 @default.
- W2973522071 cites W2095595785 @default.
- W2973522071 cites W2095681242 @default.
- W2973522071 cites W2099977612 @default.
- W2973522071 cites W2100015756 @default.
- W2973522071 cites W2102132914 @default.
- W2973522071 cites W2103251309 @default.
- W2973522071 cites W2104291319 @default.
- W2973522071 cites W2105189796 @default.
- W2973522071 cites W2108597026 @default.
- W2973522071 cites W2109827084 @default.
- W2973522071 cites W2118152839 @default.
- W2973522071 cites W2128746929 @default.
- W2973522071 cites W2138522501 @default.
- W2973522071 cites W2139788788 @default.
- W2973522071 cites W2143502114 @default.
- W2973522071 cites W2144796974 @default.
- W2973522071 cites W2145559224 @default.
- W2973522071 cites W2147857502 @default.
- W2973522071 cites W2153072170 @default.
- W2973522071 cites W2155982020 @default.
- W2973522071 cites W2158488855 @default.
- W2973522071 cites W2158740736 @default.
- W2973522071 cites W2160505034 @default.
- W2973522071 cites W2161372802 @default.
- W2973522071 cites W2327734254 @default.
- W2973522071 cites W2414388116 @default.
- W2973522071 cites W2531081124 @default.
- W2973522071 cites W2547382867 @default.
- W2973522071 cites W2576394083 @default.
- W2973522071 cites W2604712352 @default.
- W2973522071 cites W2607772719 @default.
- W2973522071 cites W2622376831 @default.
- W2973522071 cites W2788396752 @default.
- W2973522071 cites W2801881726 @default.
- W2973522071 cites W2911365197 @default.
- W2973522071 cites W2923429795 @default.
- W2973522071 cites W2954939613 @default.
- W2973522071 cites W2981775003 @default.
- W2973522071 doi "https://doi.org/10.1016/j.gca.2019.08.035" @default.
- W2973522071 hasPublicationYear "2019" @default.
- W2973522071 type Work @default.
- W2973522071 sameAs 2973522071 @default.