Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973561488> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2973561488 abstract "Surface electromyography(sEMG) is a reliable physiological electrical signal, which represents real-time human motion intents. And the EMG-based motion recognition has the characteristics of convenient operation, non-invasion and noninterference, which has broad application prospects. This paper focuses on composite motion(including multiple actions) recognition, such as sign language motions and handwritten motions. We proposed a novel method for composite motion recognition by using deep learning. To begin with, we defined a novel data structure called sEMG image and established convolution Neural Network designed for sEMG images. In order to reduce the demand of training data, we proposed to pre-train the network by MNIST data set based on the thought of transfer learning. To verify the methods that we proposed, we acquired and preprocessed the surface EMG signals of composite motions, including handwritten number motions and sign language motions. From the results, it can be concluded that deep learning methods perform better than traditional methods, including support vector machine(SVM) and Dynamic Time Warping(DTW). Especially in different sizes handwritten number recognition experiments, the deep learning methods is still very excellent, while accuracies of traditional methods are greatly reduced. In addition, we discovered that transfer learning can help ConvNet to quickly converge and reduce the demand for data." @default.
- W2973561488 created "2019-09-26" @default.
- W2973561488 creator A5008388493 @default.
- W2973561488 creator A5035124841 @default.
- W2973561488 creator A5041037440 @default.
- W2973561488 creator A5045430434 @default.
- W2973561488 date "2019-06-01" @default.
- W2973561488 modified "2023-09-23" @default.
- W2973561488 title "Recognition of Composite Motions based on sEMG via Deep Learning" @default.
- W2973561488 cites W1966455806 @default.
- W2973561488 cites W2003748371 @default.
- W2973561488 cites W2043212614 @default.
- W2973561488 cites W2094711722 @default.
- W2973561488 cites W2123167643 @default.
- W2973561488 cites W2132568014 @default.
- W2973561488 cites W2133935519 @default.
- W2973561488 cites W2557283755 @default.
- W2973561488 cites W2807631444 @default.
- W2973561488 doi "https://doi.org/10.1109/iciea.2019.8834270" @default.
- W2973561488 hasPublicationYear "2019" @default.
- W2973561488 type Work @default.
- W2973561488 sameAs 2973561488 @default.
- W2973561488 citedByCount "1" @default.
- W2973561488 countsByYear W29735614882021 @default.
- W2973561488 crossrefType "proceedings-article" @default.
- W2973561488 hasAuthorship W2973561488A5008388493 @default.
- W2973561488 hasAuthorship W2973561488A5035124841 @default.
- W2973561488 hasAuthorship W2973561488A5041037440 @default.
- W2973561488 hasAuthorship W2973561488A5045430434 @default.
- W2973561488 hasConcept C104114177 @default.
- W2973561488 hasConcept C108583219 @default.
- W2973561488 hasConcept C12267149 @default.
- W2973561488 hasConcept C150899416 @default.
- W2973561488 hasConcept C153180895 @default.
- W2973561488 hasConcept C154945302 @default.
- W2973561488 hasConcept C190502265 @default.
- W2973561488 hasConcept C28490314 @default.
- W2973561488 hasConcept C31972630 @default.
- W2973561488 hasConcept C41008148 @default.
- W2973561488 hasConcept C50644808 @default.
- W2973561488 hasConcept C52622490 @default.
- W2973561488 hasConcept C81363708 @default.
- W2973561488 hasConcept C88516994 @default.
- W2973561488 hasConceptScore W2973561488C104114177 @default.
- W2973561488 hasConceptScore W2973561488C108583219 @default.
- W2973561488 hasConceptScore W2973561488C12267149 @default.
- W2973561488 hasConceptScore W2973561488C150899416 @default.
- W2973561488 hasConceptScore W2973561488C153180895 @default.
- W2973561488 hasConceptScore W2973561488C154945302 @default.
- W2973561488 hasConceptScore W2973561488C190502265 @default.
- W2973561488 hasConceptScore W2973561488C28490314 @default.
- W2973561488 hasConceptScore W2973561488C31972630 @default.
- W2973561488 hasConceptScore W2973561488C41008148 @default.
- W2973561488 hasConceptScore W2973561488C50644808 @default.
- W2973561488 hasConceptScore W2973561488C52622490 @default.
- W2973561488 hasConceptScore W2973561488C81363708 @default.
- W2973561488 hasConceptScore W2973561488C88516994 @default.
- W2973561488 hasLocation W29735614881 @default.
- W2973561488 hasOpenAccess W2973561488 @default.
- W2973561488 hasPrimaryLocation W29735614881 @default.
- W2973561488 hasRelatedWork W1972860362 @default.
- W2973561488 hasRelatedWork W2770477580 @default.
- W2973561488 hasRelatedWork W2793560507 @default.
- W2973561488 hasRelatedWork W2802014134 @default.
- W2973561488 hasRelatedWork W2914076167 @default.
- W2973561488 hasRelatedWork W2965877022 @default.
- W2973561488 hasRelatedWork W2972557565 @default.
- W2973561488 hasRelatedWork W2973131149 @default.
- W2973561488 hasRelatedWork W2973602887 @default.
- W2973561488 hasRelatedWork W2980737786 @default.
- W2973561488 hasRelatedWork W3000928409 @default.
- W2973561488 hasRelatedWork W3005888151 @default.
- W2973561488 hasRelatedWork W3027724418 @default.
- W2973561488 hasRelatedWork W3039224603 @default.
- W2973561488 hasRelatedWork W3182855914 @default.
- W2973561488 hasRelatedWork W3195976762 @default.
- W2973561488 hasRelatedWork W3207549384 @default.
- W2973561488 hasRelatedWork W3209927196 @default.
- W2973561488 hasRelatedWork W21319018 @default.
- W2973561488 hasRelatedWork W3045463727 @default.
- W2973561488 isParatext "false" @default.
- W2973561488 isRetracted "false" @default.
- W2973561488 magId "2973561488" @default.
- W2973561488 workType "article" @default.