Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973709076> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2973709076 abstract "Abstract Intelligent multilateral well completions provide downhole flow rate, pressure, and temperature measurements at multiple well segments which allows for a continuous spatiotemporal data stream. Such an extensive data input poses a challenging task to decide on the optimal strategy of manipulating the inflow control valve (ICV) settings over time for best performance. This study investigated the use of machine learning to analyze and predict well performance given different ICV settings to ultimately maximize the well output. A commercial reservoir simulator was used to generate two synthetic reservoir models: homogeneous (Case A) and heterogenous (Case B). These synthetic data were used to train, validate, and test machine learning models. The reservoir cases were generated based on a segmented, trilateral producer completed with three ICV devices installed at tie-in segments. The data used were measurements of wellhead and downhole flow rates across ICV segments over a period of 4,000 days. A total of 1,330 experiments were conducted with an eight-day timestep, generating a total of 667,660 sample data points for each of Case A and Case B. Fully connected neural networks were used to fit the data while model generalizability was enhanced using regularization techniques, namely L2 regularization and early stopping. Both random sampling and Latin Hypercube Sampling (LHS) methods were evaluated in constructing the training, validation, and testing splits. Trained with different sample sizes drawn from the 1,330 simulated data histories for the two reservoir models, the proposed neural network showed excellent results. Given only ten simulated choices of ICV settings for training, the network proved capable of predicting oil and water production profiles at surface for both homogeneous and heterogeneous reservoir models with over 0.95 coefficient of determination (R2) when evaluated at unseen, test ICV settings. Extending the problem to downhole flow performance prediction, about 40 training simulated settings were necessary to achieve 0.95 R2. We observed that LHS was superior to random sampling in both R2 average and confidence interval. We also found that increasing the training and validation sample sizes increased the test R2 when testing against unseen cases. Study results suggest the applicability of machine reinforcement learning to estimate the well output at different ICV settings, where the neural network model depends fully on the real-time well feedback and production measurements. By using a machine learning approach during the operation of a well with multiple ICV settings, it would be feasible to estimate the lateral-by-lateral output at unseen scenarios. Hence, it becomes possible to maximize the well output by using an optimization algorithm to determine the optimal ICV settings." @default.
- W2973709076 created "2019-09-26" @default.
- W2973709076 creator A5053482507 @default.
- W2973709076 creator A5089089806 @default.
- W2973709076 date "2019-09-23" @default.
- W2973709076 modified "2023-09-23" @default.
- W2973709076 title "Prediction of Multilateral Inflow Control Valve Flow Performance Using Machine Learning" @default.
- W2973709076 cites W1677182931 @default.
- W2973709076 cites W1980046581 @default.
- W2973709076 cites W2016103205 @default.
- W2973709076 cites W2017486265 @default.
- W2973709076 cites W2036475510 @default.
- W2973709076 cites W2045469795 @default.
- W2973709076 cites W2054979538 @default.
- W2973709076 cites W2055571659 @default.
- W2973709076 cites W2067789457 @default.
- W2973709076 cites W2086812248 @default.
- W2973709076 cites W2243287236 @default.
- W2973709076 cites W2298497999 @default.
- W2973709076 cites W2761663138 @default.
- W2973709076 cites W2763546134 @default.
- W2973709076 cites W2910850561 @default.
- W2973709076 cites W4253890267 @default.
- W2973709076 cites W4255410698 @default.
- W2973709076 cites W911094397 @default.
- W2973709076 doi "https://doi.org/10.2118/196003-ms" @default.
- W2973709076 hasPublicationYear "2019" @default.
- W2973709076 type Work @default.
- W2973709076 sameAs 2973709076 @default.
- W2973709076 citedByCount "4" @default.
- W2973709076 countsByYear W29737090762020 @default.
- W2973709076 countsByYear W29737090762021 @default.
- W2973709076 crossrefType "proceedings-article" @default.
- W2973709076 hasAuthorship W2973709076A5053482507 @default.
- W2973709076 hasAuthorship W2973709076A5089089806 @default.
- W2973709076 hasConcept C105795698 @default.
- W2973709076 hasConcept C119857082 @default.
- W2973709076 hasConcept C121332964 @default.
- W2973709076 hasConcept C124101348 @default.
- W2973709076 hasConcept C154945302 @default.
- W2973709076 hasConcept C160920958 @default.
- W2973709076 hasConcept C16910744 @default.
- W2973709076 hasConcept C19499675 @default.
- W2973709076 hasConcept C199360897 @default.
- W2973709076 hasConcept C20820323 @default.
- W2973709076 hasConcept C2776132308 @default.
- W2973709076 hasConcept C2776135515 @default.
- W2973709076 hasConcept C33923547 @default.
- W2973709076 hasConcept C41008148 @default.
- W2973709076 hasConcept C44154836 @default.
- W2973709076 hasConcept C50644808 @default.
- W2973709076 hasConcept C5465570 @default.
- W2973709076 hasConcept C57879066 @default.
- W2973709076 hasConceptScore W2973709076C105795698 @default.
- W2973709076 hasConceptScore W2973709076C119857082 @default.
- W2973709076 hasConceptScore W2973709076C121332964 @default.
- W2973709076 hasConceptScore W2973709076C124101348 @default.
- W2973709076 hasConceptScore W2973709076C154945302 @default.
- W2973709076 hasConceptScore W2973709076C160920958 @default.
- W2973709076 hasConceptScore W2973709076C16910744 @default.
- W2973709076 hasConceptScore W2973709076C19499675 @default.
- W2973709076 hasConceptScore W2973709076C199360897 @default.
- W2973709076 hasConceptScore W2973709076C20820323 @default.
- W2973709076 hasConceptScore W2973709076C2776132308 @default.
- W2973709076 hasConceptScore W2973709076C2776135515 @default.
- W2973709076 hasConceptScore W2973709076C33923547 @default.
- W2973709076 hasConceptScore W2973709076C41008148 @default.
- W2973709076 hasConceptScore W2973709076C44154836 @default.
- W2973709076 hasConceptScore W2973709076C50644808 @default.
- W2973709076 hasConceptScore W2973709076C5465570 @default.
- W2973709076 hasConceptScore W2973709076C57879066 @default.
- W2973709076 hasLocation W29737090761 @default.
- W2973709076 hasOpenAccess W2973709076 @default.
- W2973709076 hasPrimaryLocation W29737090761 @default.
- W2973709076 hasRelatedWork W2354036486 @default.
- W2973709076 hasRelatedWork W2973709076 @default.
- W2973709076 hasRelatedWork W3013056386 @default.
- W2973709076 hasRelatedWork W3041434171 @default.
- W2973709076 hasRelatedWork W3099765033 @default.
- W2973709076 hasRelatedWork W3156002142 @default.
- W2973709076 hasRelatedWork W3208420502 @default.
- W2973709076 hasRelatedWork W4280641190 @default.
- W2973709076 hasRelatedWork W4287725140 @default.
- W2973709076 hasRelatedWork W1629725936 @default.
- W2973709076 isParatext "false" @default.
- W2973709076 isRetracted "false" @default.
- W2973709076 magId "2973709076" @default.
- W2973709076 workType "article" @default.