Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973798046> ?p ?o ?g. }
- W2973798046 endingPage "127149" @default.
- W2973798046 startingPage "127149" @default.
- W2973798046 abstract "In this work, a fluorescent sensing strategy was developed for identification of pesticides in food, which was obtained thought the interaction of carbon quantum dots (CQDs) and silver nanoparticles (AgNPs). The CQDs were synthesized from riboflavin according to an experimental design. On this basis, the most appropriate samples were selected and structurally characterized, where AgNPs efficiently quench the fluorescence of CQDs due a fluorescence resonance energy transfer (FRET). The CQDs was titrationed with AgNPs ([email protected] and [email protected]), determining the best concentration of quenching (0.228 and 3.030 pmol.L−1, respectively). Furthermore, a strategy of sensing was developed in order to identify the pesticides propanyl, parathion, dimethoate, chlorpyrifos and pyrimicarb, which were also verified in real samples of rice, carrot, orange and pepper. The results were analyzed by linear discriminant analysis (LDA), obtaining different response patterns against pesticide concentrations, with confidence level of 95%. After that, assays were performed using lower concentrations of the analytes. It was verified that in pepper extract, the sensibility of the sensing strategy was 250 ng.mL−1. Therefore, the CQDs synthesized in this work may be considered a powerful tool to identify pesticides in food samples." @default.
- W2973798046 created "2019-09-26" @default.
- W2973798046 creator A5004059839 @default.
- W2973798046 creator A5012886154 @default.
- W2973798046 creator A5033792510 @default.
- W2973798046 creator A5036243045 @default.
- W2973798046 creator A5045111623 @default.
- W2973798046 creator A5056824094 @default.
- W2973798046 creator A5071256502 @default.
- W2973798046 creator A5080807848 @default.
- W2973798046 date "2019-12-01" @default.
- W2973798046 modified "2023-10-14" @default.
- W2973798046 title "Sensing strategy based on Carbon Quantum Dots obtained from riboflavin for the identification of pesticides" @default.
- W2973798046 cites W1920514480 @default.
- W2973798046 cites W1977257706 @default.
- W2973798046 cites W1979250550 @default.
- W2973798046 cites W1990363520 @default.
- W2973798046 cites W2007339402 @default.
- W2973798046 cites W2010814138 @default.
- W2973798046 cites W2027517796 @default.
- W2973798046 cites W2047816702 @default.
- W2973798046 cites W2049139446 @default.
- W2973798046 cites W2054698783 @default.
- W2973798046 cites W2065699757 @default.
- W2973798046 cites W2078449221 @default.
- W2973798046 cites W2080927266 @default.
- W2973798046 cites W2082775798 @default.
- W2973798046 cites W2090692049 @default.
- W2973798046 cites W2093349921 @default.
- W2973798046 cites W2096551344 @default.
- W2973798046 cites W2097137679 @default.
- W2973798046 cites W2127163848 @default.
- W2973798046 cites W2128304434 @default.
- W2973798046 cites W2132482076 @default.
- W2973798046 cites W2132814301 @default.
- W2973798046 cites W2136693699 @default.
- W2973798046 cites W2158926184 @default.
- W2973798046 cites W2160870426 @default.
- W2973798046 cites W2161908857 @default.
- W2973798046 cites W2207224454 @default.
- W2973798046 cites W2232789690 @default.
- W2973798046 cites W2276196940 @default.
- W2973798046 cites W2325451794 @default.
- W2973798046 cites W2325736800 @default.
- W2973798046 cites W2327867629 @default.
- W2973798046 cites W2344234307 @default.
- W2973798046 cites W2345666608 @default.
- W2973798046 cites W2408976559 @default.
- W2973798046 cites W2495887163 @default.
- W2973798046 cites W2523440256 @default.
- W2973798046 cites W2526236231 @default.
- W2973798046 cites W2526462183 @default.
- W2973798046 cites W2568527314 @default.
- W2973798046 cites W2579028301 @default.
- W2973798046 cites W2581703827 @default.
- W2973798046 cites W2586254407 @default.
- W2973798046 cites W2588278653 @default.
- W2973798046 cites W2594797053 @default.
- W2973798046 cites W2594885736 @default.
- W2973798046 cites W2603257446 @default.
- W2973798046 cites W2618796907 @default.
- W2973798046 cites W2624465932 @default.
- W2973798046 cites W2732088115 @default.
- W2973798046 cites W2734786749 @default.
- W2973798046 cites W2744770358 @default.
- W2973798046 cites W2754422906 @default.
- W2973798046 cites W2754858164 @default.
- W2973798046 cites W2757523634 @default.
- W2973798046 cites W2767822845 @default.
- W2973798046 cites W2769894298 @default.
- W2973798046 cites W2775944896 @default.
- W2973798046 cites W2776470123 @default.
- W2973798046 cites W2781906410 @default.
- W2973798046 cites W2786192136 @default.
- W2973798046 cites W2790235991 @default.
- W2973798046 cites W2790373421 @default.
- W2973798046 cites W2790567054 @default.
- W2973798046 cites W2795236417 @default.
- W2973798046 cites W2813625699 @default.
- W2973798046 cites W2903948338 @default.
- W2973798046 cites W2912796266 @default.
- W2973798046 cites W2925199667 @default.
- W2973798046 cites W2951113887 @default.
- W2973798046 cites W854590488 @default.
- W2973798046 doi "https://doi.org/10.1016/j.snb.2019.127149" @default.
- W2973798046 hasPublicationYear "2019" @default.
- W2973798046 type Work @default.
- W2973798046 sameAs 2973798046 @default.
- W2973798046 citedByCount "42" @default.
- W2973798046 countsByYear W29737980462020 @default.
- W2973798046 countsByYear W29737980462021 @default.
- W2973798046 countsByYear W29737980462022 @default.
- W2973798046 countsByYear W29737980462023 @default.
- W2973798046 crossrefType "journal-article" @default.
- W2973798046 hasAuthorship W2973798046A5004059839 @default.
- W2973798046 hasAuthorship W2973798046A5012886154 @default.
- W2973798046 hasAuthorship W2973798046A5033792510 @default.
- W2973798046 hasAuthorship W2973798046A5036243045 @default.