Matches in SemOpenAlex for { <https://semopenalex.org/work/W2973800242> ?p ?o ?g. }
- W2973800242 endingPage "360" @default.
- W2973800242 startingPage "343" @default.
- W2973800242 abstract "Bearing fault diagnosis is of great significance for evaluating the reliability of machines because bearings are the critical components in rotating machinery and are prone to failure. Because of non-stationarity and the low signal-noise rate of raw vibration signals, traditional fault diagnosis methods often construct representative fault features via the technologies of feature engineering. These methods rely heavily on expertise and are inadequate in actual applications. Recently, methods based on convolutional neural networks have been studied extensively to relieve the demands of hand-crafted feature extraction and feature selection. However, the raw vibration signal is rarely taken as a direct input. This study combines a convolutional neural network with automatic hyper-parametric optimization and proposes two deep learning models for time-series pattern recognition to achieve “end-to-end” bearing fault diagnosis: a one-dimensional-convolutional neural network and a dilated convolutional neural network. The architecture of the two models are tweaked by automatic optimization rather than manual trial or grid search. Further, we try to figure out the inner operating mechanism of the proposed methods by visualizing the automatically learned features. The proposed methods are applied to diagnose roller bearing faults on a benchmark experiment and a prototype experiment. The results verify that our methods can achieve better performance than other intelligent methods via a Gaussian-noise test." @default.
- W2973800242 created "2019-09-26" @default.
- W2973800242 creator A5013023384 @default.
- W2973800242 creator A5013795174 @default.
- W2973800242 creator A5025851882 @default.
- W2973800242 creator A5036120236 @default.
- W2973800242 date "2019-09-19" @default.
- W2973800242 modified "2023-09-25" @default.
- W2973800242 title "Raw vibration signal pattern recognition with automatic hyper-parameter-optimized convolutional neural network for bearing fault diagnosis" @default.
- W2973800242 cites W1694307164 @default.
- W2973800242 cites W1901616594 @default.
- W2973800242 cites W1964511482 @default.
- W2973800242 cites W1970537494 @default.
- W2973800242 cites W1995562189 @default.
- W2973800242 cites W2036597765 @default.
- W2973800242 cites W2067802406 @default.
- W2973800242 cites W2132083787 @default.
- W2973800242 cites W2184192902 @default.
- W2973800242 cites W2194775991 @default.
- W2973800242 cites W2219903032 @default.
- W2973800242 cites W2404692435 @default.
- W2973800242 cites W243674440 @default.
- W2973800242 cites W2480364715 @default.
- W2973800242 cites W2618530766 @default.
- W2973800242 cites W2744790985 @default.
- W2973800242 cites W2756789966 @default.
- W2973800242 cites W2763269460 @default.
- W2973800242 cites W2767230764 @default.
- W2973800242 cites W2768083292 @default.
- W2973800242 cites W2769073591 @default.
- W2973800242 cites W2771734292 @default.
- W2973800242 cites W2792063098 @default.
- W2973800242 cites W2896503470 @default.
- W2973800242 cites W2903985453 @default.
- W2973800242 cites W2053945707 @default.
- W2973800242 doi "https://doi.org/10.1177/0954406219875756" @default.
- W2973800242 hasPublicationYear "2019" @default.
- W2973800242 type Work @default.
- W2973800242 sameAs 2973800242 @default.
- W2973800242 citedByCount "13" @default.
- W2973800242 countsByYear W29738002422020 @default.
- W2973800242 countsByYear W29738002422021 @default.
- W2973800242 countsByYear W29738002422022 @default.
- W2973800242 countsByYear W29738002422023 @default.
- W2973800242 crossrefType "journal-article" @default.
- W2973800242 hasAuthorship W2973800242A5013023384 @default.
- W2973800242 hasAuthorship W2973800242A5013795174 @default.
- W2973800242 hasAuthorship W2973800242A5025851882 @default.
- W2973800242 hasAuthorship W2973800242A5036120236 @default.
- W2973800242 hasConcept C108583219 @default.
- W2973800242 hasConcept C115961682 @default.
- W2973800242 hasConcept C119857082 @default.
- W2973800242 hasConcept C127313418 @default.
- W2973800242 hasConcept C13280743 @default.
- W2973800242 hasConcept C138885662 @default.
- W2973800242 hasConcept C153180895 @default.
- W2973800242 hasConcept C154945302 @default.
- W2973800242 hasConcept C165205528 @default.
- W2973800242 hasConcept C175551986 @default.
- W2973800242 hasConcept C185798385 @default.
- W2973800242 hasConcept C199978012 @default.
- W2973800242 hasConcept C205649164 @default.
- W2973800242 hasConcept C2776401178 @default.
- W2973800242 hasConcept C41008148 @default.
- W2973800242 hasConcept C41895202 @default.
- W2973800242 hasConcept C50644808 @default.
- W2973800242 hasConcept C52622490 @default.
- W2973800242 hasConcept C81363708 @default.
- W2973800242 hasConcept C99498987 @default.
- W2973800242 hasConceptScore W2973800242C108583219 @default.
- W2973800242 hasConceptScore W2973800242C115961682 @default.
- W2973800242 hasConceptScore W2973800242C119857082 @default.
- W2973800242 hasConceptScore W2973800242C127313418 @default.
- W2973800242 hasConceptScore W2973800242C13280743 @default.
- W2973800242 hasConceptScore W2973800242C138885662 @default.
- W2973800242 hasConceptScore W2973800242C153180895 @default.
- W2973800242 hasConceptScore W2973800242C154945302 @default.
- W2973800242 hasConceptScore W2973800242C165205528 @default.
- W2973800242 hasConceptScore W2973800242C175551986 @default.
- W2973800242 hasConceptScore W2973800242C185798385 @default.
- W2973800242 hasConceptScore W2973800242C199978012 @default.
- W2973800242 hasConceptScore W2973800242C205649164 @default.
- W2973800242 hasConceptScore W2973800242C2776401178 @default.
- W2973800242 hasConceptScore W2973800242C41008148 @default.
- W2973800242 hasConceptScore W2973800242C41895202 @default.
- W2973800242 hasConceptScore W2973800242C50644808 @default.
- W2973800242 hasConceptScore W2973800242C52622490 @default.
- W2973800242 hasConceptScore W2973800242C81363708 @default.
- W2973800242 hasConceptScore W2973800242C99498987 @default.
- W2973800242 hasFunder F4320321885 @default.
- W2973800242 hasIssue "1" @default.
- W2973800242 hasLocation W29738002421 @default.
- W2973800242 hasOpenAccess W2973800242 @default.
- W2973800242 hasPrimaryLocation W29738002421 @default.
- W2973800242 hasRelatedWork W2279398222 @default.
- W2973800242 hasRelatedWork W2546942002 @default.
- W2973800242 hasRelatedWork W2731899572 @default.
- W2973800242 hasRelatedWork W2946016983 @default.