Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974080278> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2974080278 endingPage "938" @default.
- W2974080278 startingPage "928" @default.
- W2974080278 abstract "Ant colony optimization (ACO) algorithms have been successfully applied to data classification problems that aim at discovering a list of classification rules. However, on the one hand, the ACO algorithm has defects including long search times and convergence issues with non-optimal solutions. On the other hand, given bottlenecks such as memory restrictions, time complexity, or data complexity, it is too hard to solve a problem when its scale becomes too large. One solution for this issue is to design a highly parallelized learning algorithm. The MapReduce programming model has quickly emerged as the most common model for executing simple algorithmic tasks over huge volumes of data, since it is simple, highly abstract, and efficient. Therefore, MapReduce-based ACO has been researched extensively. However, due to its unidirectional communication model and the inherent lack of support for iterative execution, ACO algorithms cannot easily be implemented on MapReduce. In this paper, a novel classification rule discovery algorithm is proposed, namely MR-AntMiner, which can capitalize on the benefits of the MapReduce model. In order to construct quality rules with fewer iterations as well as less communication between different nodes to share the parameters used by each ant, our algorithm splits the training data into some subsets that are randomly mapped to different mappers; then the traditional ACO algorithm is run on each mapper to gain the local best rule set, and the global best rule list is produced in the reducer phase according to a voting mechanism. The performance of our algorithm was studied experimentally on 14 publicly available data sets and further compared to several state-of-the-art classification approaches in terms of accuracy. The experimental results show that the predictive accuracy obtained by our algorithm is statistically higher than that of the compared targets. Furthermore, experimental studies show the feasibility and the good performance of the proposed parallelized MR-AntMiner algorithm." @default.
- W2974080278 created "2019-09-26" @default.
- W2974080278 creator A5024497886 @default.
- W2974080278 creator A5029347419 @default.
- W2974080278 creator A5043143249 @default.
- W2974080278 creator A5048213778 @default.
- W2974080278 creator A5063354643 @default.
- W2974080278 creator A5071568179 @default.
- W2974080278 date "2019-09-20" @default.
- W2974080278 modified "2023-10-16" @default.
- W2974080278 title "MR-AntMiner: A Novel MapReduce Classification Rule Discovery with Ant Colony Intelligence" @default.
- W2974080278 doi "https://doi.org/10.20965/jaciii.2019.p0928" @default.
- W2974080278 hasPublicationYear "2019" @default.
- W2974080278 type Work @default.
- W2974080278 sameAs 2974080278 @default.
- W2974080278 citedByCount "0" @default.
- W2974080278 crossrefType "journal-article" @default.
- W2974080278 hasAuthorship W2974080278A5024497886 @default.
- W2974080278 hasAuthorship W2974080278A5029347419 @default.
- W2974080278 hasAuthorship W2974080278A5043143249 @default.
- W2974080278 hasAuthorship W2974080278A5048213778 @default.
- W2974080278 hasAuthorship W2974080278A5063354643 @default.
- W2974080278 hasAuthorship W2974080278A5071568179 @default.
- W2974080278 hasBestOaLocation W29740802781 @default.
- W2974080278 hasConcept C11413529 @default.
- W2974080278 hasConcept C119857082 @default.
- W2974080278 hasConcept C124101348 @default.
- W2974080278 hasConcept C127413603 @default.
- W2974080278 hasConcept C147176958 @default.
- W2974080278 hasConcept C149271511 @default.
- W2974080278 hasConcept C154945302 @default.
- W2974080278 hasConcept C162324750 @default.
- W2974080278 hasConcept C177264268 @default.
- W2974080278 hasConcept C199360897 @default.
- W2974080278 hasConcept C2776985865 @default.
- W2974080278 hasConcept C2777303404 @default.
- W2974080278 hasConcept C2780801425 @default.
- W2974080278 hasConcept C40128228 @default.
- W2974080278 hasConcept C41008148 @default.
- W2974080278 hasConcept C50522688 @default.
- W2974080278 hasConceptScore W2974080278C11413529 @default.
- W2974080278 hasConceptScore W2974080278C119857082 @default.
- W2974080278 hasConceptScore W2974080278C124101348 @default.
- W2974080278 hasConceptScore W2974080278C127413603 @default.
- W2974080278 hasConceptScore W2974080278C147176958 @default.
- W2974080278 hasConceptScore W2974080278C149271511 @default.
- W2974080278 hasConceptScore W2974080278C154945302 @default.
- W2974080278 hasConceptScore W2974080278C162324750 @default.
- W2974080278 hasConceptScore W2974080278C177264268 @default.
- W2974080278 hasConceptScore W2974080278C199360897 @default.
- W2974080278 hasConceptScore W2974080278C2776985865 @default.
- W2974080278 hasConceptScore W2974080278C2777303404 @default.
- W2974080278 hasConceptScore W2974080278C2780801425 @default.
- W2974080278 hasConceptScore W2974080278C40128228 @default.
- W2974080278 hasConceptScore W2974080278C41008148 @default.
- W2974080278 hasConceptScore W2974080278C50522688 @default.
- W2974080278 hasIssue "5" @default.
- W2974080278 hasLocation W29740802781 @default.
- W2974080278 hasOpenAccess W2974080278 @default.
- W2974080278 hasPrimaryLocation W29740802781 @default.
- W2974080278 hasRelatedWork W1551172155 @default.
- W2974080278 hasRelatedWork W1582762071 @default.
- W2974080278 hasRelatedWork W2017010318 @default.
- W2974080278 hasRelatedWork W2132128297 @default.
- W2974080278 hasRelatedWork W2170556630 @default.
- W2974080278 hasRelatedWork W2358634610 @default.
- W2974080278 hasRelatedWork W2371857510 @default.
- W2974080278 hasRelatedWork W2961085424 @default.
- W2974080278 hasRelatedWork W4306674287 @default.
- W2974080278 hasRelatedWork W4322493557 @default.
- W2974080278 hasVolume "23" @default.
- W2974080278 isParatext "false" @default.
- W2974080278 isRetracted "false" @default.
- W2974080278 magId "2974080278" @default.
- W2974080278 workType "article" @default.