Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974247257> ?p ?o ?g. }
- W2974247257 abstract "Complex network has proven to be a general model to characterize interactions of practical complex systems. Recently, reconstructing the structure of complex networks with limited and noisy data attracts much research attention and has gradually become a hotspot. However, the collected data are often contaminated by unknown outliers inevitably, which seriously affects the accuracy of network reconstruction. Unfortunately, the existence of outliers is hard to be identified and always ignored in the network structure reconstruction task. To address this issue, here we propose a novel method which involves the outliers from the Bayesian perspective. The accuracy and the robustness of the proposed method have been verified in network reconstruction with payoff data contaminated with some outliers on both artificial networks and empirical networks. Extensive simulation results demonstrate the superiority of the proposed method. Thus, it can be concluded that since the proposed method can identify and get rid of outliers in observation data, it is conducive to improve the performance of network reconstruction." @default.
- W2974247257 created "2019-09-26" @default.
- W2974247257 creator A5003360183 @default.
- W2974247257 creator A5010965630 @default.
- W2974247257 creator A5046732716 @default.
- W2974247257 creator A5049939311 @default.
- W2974247257 creator A5065058975 @default.
- W2974247257 date "2019-09-01" @default.
- W2974247257 modified "2023-10-16" @default.
- W2974247257 title "Robust network structure reconstruction based on Bayesian compressive sensing" @default.
- W2974247257 cites W1967531011 @default.
- W2974247257 cites W1974430480 @default.
- W2974247257 cites W1974679494 @default.
- W2974247257 cites W1992195122 @default.
- W2974247257 cites W1997418576 @default.
- W2974247257 cites W1999598817 @default.
- W2974247257 cites W2000929155 @default.
- W2974247257 cites W2009503811 @default.
- W2974247257 cites W2015538881 @default.
- W2974247257 cites W2017694754 @default.
- W2974247257 cites W2024251722 @default.
- W2974247257 cites W2025118621 @default.
- W2974247257 cites W2025490132 @default.
- W2974247257 cites W2030358500 @default.
- W2974247257 cites W2046207348 @default.
- W2974247257 cites W2071284784 @default.
- W2974247257 cites W2071398267 @default.
- W2974247257 cites W2073853984 @default.
- W2974247257 cites W2077091446 @default.
- W2974247257 cites W2083638266 @default.
- W2974247257 cites W2084098300 @default.
- W2974247257 cites W2087590941 @default.
- W2974247257 cites W2096451472 @default.
- W2974247257 cites W2097450978 @default.
- W2974247257 cites W2127271355 @default.
- W2974247257 cites W2128018982 @default.
- W2974247257 cites W2138890315 @default.
- W2974247257 cites W2171778903 @default.
- W2974247257 cites W2201538399 @default.
- W2974247257 cites W2337806273 @default.
- W2974247257 cites W2342629998 @default.
- W2974247257 cites W2346847115 @default.
- W2974247257 cites W2618208446 @default.
- W2974247257 cites W2752687826 @default.
- W2974247257 cites W2766578459 @default.
- W2974247257 cites W2783250069 @default.
- W2974247257 cites W2794029453 @default.
- W2974247257 cites W2794313190 @default.
- W2974247257 cites W2809044906 @default.
- W2974247257 cites W2889894296 @default.
- W2974247257 cites W2892254062 @default.
- W2974247257 cites W2934435821 @default.
- W2974247257 cites W3098354597 @default.
- W2974247257 cites W3098439297 @default.
- W2974247257 cites W3102340512 @default.
- W2974247257 cites W3103450460 @default.
- W2974247257 cites W606168909 @default.
- W2974247257 doi "https://doi.org/10.1063/1.5109375" @default.
- W2974247257 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31575152" @default.
- W2974247257 hasPublicationYear "2019" @default.
- W2974247257 type Work @default.
- W2974247257 sameAs 2974247257 @default.
- W2974247257 citedByCount "3" @default.
- W2974247257 countsByYear W29742472572021 @default.
- W2974247257 countsByYear W29742472572022 @default.
- W2974247257 countsByYear W29742472572023 @default.
- W2974247257 crossrefType "journal-article" @default.
- W2974247257 hasAuthorship W2974247257A5003360183 @default.
- W2974247257 hasAuthorship W2974247257A5010965630 @default.
- W2974247257 hasAuthorship W2974247257A5046732716 @default.
- W2974247257 hasAuthorship W2974247257A5049939311 @default.
- W2974247257 hasAuthorship W2974247257A5065058975 @default.
- W2974247257 hasConcept C104317684 @default.
- W2974247257 hasConcept C107673813 @default.
- W2974247257 hasConcept C119857082 @default.
- W2974247257 hasConcept C124101348 @default.
- W2974247257 hasConcept C124851039 @default.
- W2974247257 hasConcept C136764020 @default.
- W2974247257 hasConcept C154945302 @default.
- W2974247257 hasConcept C185592680 @default.
- W2974247257 hasConcept C33724603 @default.
- W2974247257 hasConcept C34947359 @default.
- W2974247257 hasConcept C41008148 @default.
- W2974247257 hasConcept C55493867 @default.
- W2974247257 hasConcept C63479239 @default.
- W2974247257 hasConcept C79337645 @default.
- W2974247257 hasConceptScore W2974247257C104317684 @default.
- W2974247257 hasConceptScore W2974247257C107673813 @default.
- W2974247257 hasConceptScore W2974247257C119857082 @default.
- W2974247257 hasConceptScore W2974247257C124101348 @default.
- W2974247257 hasConceptScore W2974247257C124851039 @default.
- W2974247257 hasConceptScore W2974247257C136764020 @default.
- W2974247257 hasConceptScore W2974247257C154945302 @default.
- W2974247257 hasConceptScore W2974247257C185592680 @default.
- W2974247257 hasConceptScore W2974247257C33724603 @default.
- W2974247257 hasConceptScore W2974247257C34947359 @default.
- W2974247257 hasConceptScore W2974247257C41008148 @default.
- W2974247257 hasConceptScore W2974247257C55493867 @default.
- W2974247257 hasConceptScore W2974247257C63479239 @default.
- W2974247257 hasConceptScore W2974247257C79337645 @default.