Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974270968> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2974270968 endingPage "117" @default.
- W2974270968 startingPage "104" @default.
- W2974270968 abstract "Computer vision methods are wide-spread techniques mostly used for detecting cracks on structural components, extracting information from traffic flows, and analyzing safety in construction processes. In recent years, with increasing usage of machine learning techniques, computer vision applications are supported by machine learning approaches. So, several studies were conducted using machine learning techniques to apply image processing. As a result, this chapter offers a scientometric analysis for investigating current literature of image processing studies for civil engineering field in order to track the scientometric relationship between machine learning and image processing techniques." @default.
- W2974270968 created "2019-09-26" @default.
- W2974270968 creator A5034399680 @default.
- W2974270968 date "2020-01-01" @default.
- W2974270968 modified "2023-09-30" @default.
- W2974270968 title "A Scientometric Analysis and a Review on Current Literature of Computer Vision Applications" @default.
- W2974270968 cites W1513670756 @default.
- W2974270968 cites W1837140482 @default.
- W2974270968 cites W1916189941 @default.
- W2974270968 cites W1929042294 @default.
- W2974270968 cites W1966941463 @default.
- W2974270968 cites W1973261441 @default.
- W2974270968 cites W1995903777 @default.
- W2974270968 cites W2026302857 @default.
- W2974270968 cites W2067534425 @default.
- W2974270968 cites W2067713319 @default.
- W2974270968 cites W2085561993 @default.
- W2974270968 cites W2088209891 @default.
- W2974270968 cites W2091149439 @default.
- W2974270968 cites W2111361244 @default.
- W2974270968 cites W2128256241 @default.
- W2974270968 cites W2144801789 @default.
- W2974270968 cites W2150220236 @default.
- W2974270968 cites W2161879536 @default.
- W2974270968 cites W2168356304 @default.
- W2974270968 cites W2168865631 @default.
- W2974270968 cites W2598457882 @default.
- W2974270968 cites W2604936959 @default.
- W2974270968 cites W2768148056 @default.
- W2974270968 cites W2779497038 @default.
- W2974270968 cites W2790722345 @default.
- W2974270968 cites W2796506861 @default.
- W2974270968 cites W2809239921 @default.
- W2974270968 cites W2903619742 @default.
- W2974270968 cites W4238591974 @default.
- W2974270968 cites W4292887282 @default.
- W2974270968 doi "https://doi.org/10.4018/978-1-7998-0301-0.ch006" @default.
- W2974270968 hasPublicationYear "2020" @default.
- W2974270968 type Work @default.
- W2974270968 sameAs 2974270968 @default.
- W2974270968 citedByCount "0" @default.
- W2974270968 crossrefType "book-chapter" @default.
- W2974270968 hasAuthorship W2974270968A5034399680 @default.
- W2974270968 hasConcept C115961682 @default.
- W2974270968 hasConcept C119857082 @default.
- W2974270968 hasConcept C154945302 @default.
- W2974270968 hasConcept C202444582 @default.
- W2974270968 hasConcept C2522767166 @default.
- W2974270968 hasConcept C33923547 @default.
- W2974270968 hasConcept C41008148 @default.
- W2974270968 hasConcept C5339829 @default.
- W2974270968 hasConcept C9417928 @default.
- W2974270968 hasConcept C9652623 @default.
- W2974270968 hasConceptScore W2974270968C115961682 @default.
- W2974270968 hasConceptScore W2974270968C119857082 @default.
- W2974270968 hasConceptScore W2974270968C154945302 @default.
- W2974270968 hasConceptScore W2974270968C202444582 @default.
- W2974270968 hasConceptScore W2974270968C2522767166 @default.
- W2974270968 hasConceptScore W2974270968C33923547 @default.
- W2974270968 hasConceptScore W2974270968C41008148 @default.
- W2974270968 hasConceptScore W2974270968C5339829 @default.
- W2974270968 hasConceptScore W2974270968C9417928 @default.
- W2974270968 hasConceptScore W2974270968C9652623 @default.
- W2974270968 hasLocation W29742709681 @default.
- W2974270968 hasOpenAccess W2974270968 @default.
- W2974270968 hasPrimaryLocation W29742709681 @default.
- W2974270968 hasRelatedWork W1671651577 @default.
- W2974270968 hasRelatedWork W2948613463 @default.
- W2974270968 hasRelatedWork W3112940371 @default.
- W2974270968 hasRelatedWork W3129181224 @default.
- W2974270968 hasRelatedWork W4224108623 @default.
- W2974270968 hasRelatedWork W4288754364 @default.
- W2974270968 hasRelatedWork W4308734192 @default.
- W2974270968 hasRelatedWork W4312831135 @default.
- W2974270968 hasRelatedWork W4317107307 @default.
- W2974270968 hasRelatedWork W2507763083 @default.
- W2974270968 isParatext "false" @default.
- W2974270968 isRetracted "false" @default.
- W2974270968 magId "2974270968" @default.
- W2974270968 workType "book-chapter" @default.