Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974408919> ?p ?o ?g. }
- W2974408919 endingPage "1465" @default.
- W2974408919 startingPage "1458" @default.
- W2974408919 abstract "Abstract Objective The study sought to evaluate how availability of different types of health records data affect the accuracy of machine learning models predicting suicidal behavior. Materials and Methods Records from 7 large health systems identified 19 061 056 outpatient visits to mental health specialty or general medical providers between 2009 and 2015. Machine learning models (logistic regression with penalized LASSO [least absolute shrinkage and selection operator] variable selection) were developed to predict suicide death (n = 1240) or probable suicide attempt (n = 24 133) in the following 90 days. Base models were used only historical insurance claims data and were then augmented with data regarding sociodemographic characteristics (race, ethnicity, and neighborhood characteristics), past patient-reported outcome questionnaires from electronic health records, and data (diagnoses and questionnaires) recorded during the visit. Results For prediction of any attempt following mental health specialty visits, a model limited to historical insurance claims data performed approximately as well (C-statistic 0.843) as a model using all available data (C-statistic 0.850). For prediction of suicide attempt following a general medical visit, addition of data recorded during the visit yielded a meaningful improvement over a model using all data up to the prior day (C-statistic 0.853 vs 0.838). Discussion Results may not generalize to setting with less comprehensive data or different patterns of care. Even the poorest-performing models were superior to brief self-report questionnaires or traditional clinical assessment. Conclusions Implementation of suicide risk prediction models in mental health specialty settings may be less technically demanding than expected. In general medical settings, however, delivery of optimal risk predictions at the point of care may require more sophisticated informatics capability." @default.
- W2974408919 created "2019-09-26" @default.
- W2974408919 creator A5006606212 @default.
- W2974408919 creator A5007625847 @default.
- W2974408919 creator A5040344572 @default.
- W2974408919 creator A5057537346 @default.
- W2974408919 creator A5070047685 @default.
- W2974408919 creator A5082280723 @default.
- W2974408919 creator A5088265042 @default.
- W2974408919 date "2019-09-16" @default.
- W2974408919 modified "2023-10-05" @default.
- W2974408919 title "What health records data are required for accurate prediction of suicidal behavior?" @default.
- W2974408919 cites W1727999343 @default.
- W2974408919 cites W1942398539 @default.
- W2974408919 cites W1977934795 @default.
- W2974408919 cites W2004664771 @default.
- W2974408919 cites W2057468507 @default.
- W2974408919 cites W2121468917 @default.
- W2974408919 cites W2136561006 @default.
- W2974408919 cites W2149860264 @default.
- W2974408919 cites W2154692607 @default.
- W2974408919 cites W2155653793 @default.
- W2974408919 cites W2157825442 @default.
- W2974408919 cites W2239385095 @default.
- W2974408919 cites W2294027214 @default.
- W2974408919 cites W2500707965 @default.
- W2974408919 cites W2505028325 @default.
- W2974408919 cites W2509888018 @default.
- W2974408919 cites W2518663325 @default.
- W2974408919 cites W2554980225 @default.
- W2974408919 cites W2605512411 @default.
- W2974408919 cites W2725461439 @default.
- W2974408919 cites W2787894218 @default.
- W2974408919 cites W2804266670 @default.
- W2974408919 cites W2897748714 @default.
- W2974408919 cites W4211177544 @default.
- W2974408919 cites W4294541781 @default.
- W2974408919 doi "https://doi.org/10.1093/jamia/ocz136" @default.
- W2974408919 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6857508" @default.
- W2974408919 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31529095" @default.
- W2974408919 hasPublicationYear "2019" @default.
- W2974408919 type Work @default.
- W2974408919 sameAs 2974408919 @default.
- W2974408919 citedByCount "19" @default.
- W2974408919 countsByYear W29744089192019 @default.
- W2974408919 countsByYear W29744089192020 @default.
- W2974408919 countsByYear W29744089192021 @default.
- W2974408919 countsByYear W29744089192022 @default.
- W2974408919 countsByYear W29744089192023 @default.
- W2974408919 crossrefType "journal-article" @default.
- W2974408919 hasAuthorship W2974408919A5006606212 @default.
- W2974408919 hasAuthorship W2974408919A5007625847 @default.
- W2974408919 hasAuthorship W2974408919A5040344572 @default.
- W2974408919 hasAuthorship W2974408919A5057537346 @default.
- W2974408919 hasAuthorship W2974408919A5070047685 @default.
- W2974408919 hasAuthorship W2974408919A5082280723 @default.
- W2974408919 hasAuthorship W2974408919A5088265042 @default.
- W2974408919 hasBestOaLocation W29744089191 @default.
- W2974408919 hasConcept C105795698 @default.
- W2974408919 hasConcept C118552586 @default.
- W2974408919 hasConcept C126322002 @default.
- W2974408919 hasConcept C126838900 @default.
- W2974408919 hasConcept C134362201 @default.
- W2974408919 hasConcept C142724271 @default.
- W2974408919 hasConcept C151956035 @default.
- W2974408919 hasConcept C195910791 @default.
- W2974408919 hasConcept C20387591 @default.
- W2974408919 hasConcept C33923547 @default.
- W2974408919 hasConcept C512399662 @default.
- W2974408919 hasConcept C534262118 @default.
- W2974408919 hasConcept C545542383 @default.
- W2974408919 hasConcept C71924100 @default.
- W2974408919 hasConcept C89128539 @default.
- W2974408919 hasConceptScore W2974408919C105795698 @default.
- W2974408919 hasConceptScore W2974408919C118552586 @default.
- W2974408919 hasConceptScore W2974408919C126322002 @default.
- W2974408919 hasConceptScore W2974408919C126838900 @default.
- W2974408919 hasConceptScore W2974408919C134362201 @default.
- W2974408919 hasConceptScore W2974408919C142724271 @default.
- W2974408919 hasConceptScore W2974408919C151956035 @default.
- W2974408919 hasConceptScore W2974408919C195910791 @default.
- W2974408919 hasConceptScore W2974408919C20387591 @default.
- W2974408919 hasConceptScore W2974408919C33923547 @default.
- W2974408919 hasConceptScore W2974408919C512399662 @default.
- W2974408919 hasConceptScore W2974408919C534262118 @default.
- W2974408919 hasConceptScore W2974408919C545542383 @default.
- W2974408919 hasConceptScore W2974408919C71924100 @default.
- W2974408919 hasConceptScore W2974408919C89128539 @default.
- W2974408919 hasFunder F4320337346 @default.
- W2974408919 hasIssue "12" @default.
- W2974408919 hasLocation W29744089191 @default.
- W2974408919 hasLocation W29744089192 @default.
- W2974408919 hasOpenAccess W2974408919 @default.
- W2974408919 hasPrimaryLocation W29744089191 @default.
- W2974408919 hasRelatedWork W1981176581 @default.
- W2974408919 hasRelatedWork W2000562142 @default.
- W2974408919 hasRelatedWork W2161971978 @default.
- W2974408919 hasRelatedWork W2245747428 @default.