Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974444031> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2974444031 abstract "Abstract Reservoir fluid characterization is critical to understanding the nature and phase behavior of reservoir fluids. This process has typically been undertaken using laboratory analyses, a time-intensive and costly process which also provides compositional data. Over time, correlations have been developed to predict the PVT properties of crude oil based on parameters such as solution gas-oil ratio, saturation pressure, viscosity, and density. These correlations have had shortcomings such as utilizing a leave-one-out approach, or recently, focused on non-inferable methods such as Neural Networks. This work utilizes compositional data, hitherto neglected in PVT correlations, as input into an inferable machine learning algorithm which can be used to predict PVT properties of crude oil from the Niger Delta basin. Data containing bubble point pressure, solution gas-oil ratio, and oil formation volume factor alongside composition were obtained and used to develop models. Machine learning model training techniques such as data preprocessing, transformation and hyper-parameter tuning were undertaken. The elastic net regression algorithm utilizing a cross-validation approach was used to develop the models. This ensured an adequate bias-variance tradeoff. The resulting models were compared with established correlations such as Standing & Katz. Upon statistical analyses performed comparably. The bubble point pressure model, solution gas-oil ratio, oil formation volume factor achieved R-squared value of 0.87, 0.95 and 0.84 respectively on the validation dataset. The models are expressed in the form of equations which can be used in petroleum engineering calculations or implemented in reservoir simulation software. By implementing this approach, a framework for utilizing machine learning for Petroleum Engineering problems which produces inferable results is established. Given potential discoveries in the Niger Delta, upon obtaining compositional data, these set of equations can be used to predict the reservoir crude oil PVT properties, leading to savings in time, cost, and effort, while obtaining actionable and accurate results." @default.
- W2974444031 created "2019-09-26" @default.
- W2974444031 creator A5016624843 @default.
- W2974444031 date "2019-09-23" @default.
- W2974444031 modified "2023-09-26" @default.
- W2974444031 title "An Inferable Machine Learning Approach to Predicting PVT Properties of Niger Delta Crude Oil using Compositional Data" @default.
- W2974444031 cites W1979610971 @default.
- W2974444031 cites W1999014321 @default.
- W2974444031 cites W2032403020 @default.
- W2974444031 cites W2052368800 @default.
- W2974444031 cites W2079493731 @default.
- W2974444031 cites W2086115842 @default.
- W2974444031 cites W2087814009 @default.
- W2974444031 cites W2101596173 @default.
- W2974444031 cites W2299085446 @default.
- W2974444031 cites W2787894218 @default.
- W2974444031 doi "https://doi.org/10.2118/199783-stu" @default.
- W2974444031 hasPublicationYear "2019" @default.
- W2974444031 type Work @default.
- W2974444031 sameAs 2974444031 @default.
- W2974444031 citedByCount "2" @default.
- W2974444031 countsByYear W29744440312021 @default.
- W2974444031 countsByYear W29744440312022 @default.
- W2974444031 crossrefType "proceedings-article" @default.
- W2974444031 hasAuthorship W2974444031A5016624843 @default.
- W2974444031 hasConcept C119857082 @default.
- W2974444031 hasConcept C127413603 @default.
- W2974444031 hasConcept C157915830 @default.
- W2974444031 hasConcept C173608175 @default.
- W2974444031 hasConcept C41008148 @default.
- W2974444031 hasConcept C46262669 @default.
- W2974444031 hasConcept C50644808 @default.
- W2974444031 hasConcept C78762247 @default.
- W2974444031 hasConceptScore W2974444031C119857082 @default.
- W2974444031 hasConceptScore W2974444031C127413603 @default.
- W2974444031 hasConceptScore W2974444031C157915830 @default.
- W2974444031 hasConceptScore W2974444031C173608175 @default.
- W2974444031 hasConceptScore W2974444031C41008148 @default.
- W2974444031 hasConceptScore W2974444031C46262669 @default.
- W2974444031 hasConceptScore W2974444031C50644808 @default.
- W2974444031 hasConceptScore W2974444031C78762247 @default.
- W2974444031 hasLocation W29744440311 @default.
- W2974444031 hasOpenAccess W2974444031 @default.
- W2974444031 hasPrimaryLocation W29744440311 @default.
- W2974444031 hasRelatedWork W1562761874 @default.
- W2974444031 hasRelatedWork W1571091470 @default.
- W2974444031 hasRelatedWork W1984743843 @default.
- W2974444031 hasRelatedWork W2035490663 @default.
- W2974444031 hasRelatedWork W2086008172 @default.
- W2974444031 hasRelatedWork W2357409183 @default.
- W2974444031 hasRelatedWork W2386387936 @default.
- W2974444031 hasRelatedWork W2973700309 @default.
- W2974444031 hasRelatedWork W3112361750 @default.
- W2974444031 hasRelatedWork W867172147 @default.
- W2974444031 isParatext "false" @default.
- W2974444031 isRetracted "false" @default.
- W2974444031 magId "2974444031" @default.
- W2974444031 workType "article" @default.