Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974549271> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2974549271 abstract "A combinatorial structure, $mathcal{F}$, with counting sequence ${a_n}_{nge 0}$ and ordinary generating function $G_mathcal{F}=sum_{nge0} a_n x^n$, is positive algebraic if $G_mathcal{F}$ satisfies a polynomial equation $G_mathcal{F}=sum_{k=0}^N p_k(x),G_mathcal{F}^k $ and $p_k(x)$ is a polynomial in $x$ with non-negative integer coefficients. We show that every such family is associated with a normed $mathbf{n}$-magma. An $mathbf{n}$-magma with $mathbf{n}=(n_1,dots, n_k)$ is a pair $mathcal{M}$ and $mathcal{F}$ where $mathcal{M}$ is a set of combinatorial structures and $mathcal{F}$ is a tuple of $n_i$-ary maps $f_i,:,mathcal{M}^{n_i}to mathcal{M}$. A norm is a super-additive size map $||cdot||,:, mathcal{M}to mathbb{N} $. If the normed $mathbf{n}$-magma is free then we show there exists a recursive, norm preserving, universal bijection between all positive algebraic families $mathcal{F}_i$ with the same counting sequence. A free $mathbf{n}$-magma is defined using a universal mapping principle. We state a theorem which provides a combinatorial method of proving if a particular $mathbf{n}$-magma is free. We illustrate this by defining several $mathbf{n}$-magmas: eleven $(1,1)$-magmas (the Fibonacci families), seventeen $(1,2)$-magmas (nine Motzkin and eight Schroder families) and seven $(3)$-magmas (the Fuss-Catalan families). We prove they are all free and hence obtain a universal bijection for each $mathbf{n}$. We also show how the $mathbf{n}$-magma structure manifests as an embedded bijection." @default.
- W2974549271 created "2019-09-26" @default.
- W2974549271 creator A5015197407 @default.
- W2974549271 creator A5071575526 @default.
- W2974549271 date "2019-09-20" @default.
- W2974549271 modified "2023-09-27" @default.
- W2974549271 title "Fibonacci, Motzkin, Schroder, Fuss-Catalan and other Combinatorial Structures: Universal and Embedded Bijections" @default.
- W2974549271 cites W1579213680 @default.
- W2974549271 cites W1982517379 @default.
- W2974549271 cites W2046479912 @default.
- W2974549271 cites W2065291336 @default.
- W2974549271 cites W2078204420 @default.
- W2974549271 cites W2078895051 @default.
- W2974549271 cites W2109934391 @default.
- W2974549271 cites W2123315039 @default.
- W2974549271 cites W2126209209 @default.
- W2974549271 cites W2888928260 @default.
- W2974549271 cites W66842132 @default.
- W2974549271 cites W2042632881 @default.
- W2974549271 hasPublicationYear "2019" @default.
- W2974549271 type Work @default.
- W2974549271 sameAs 2974549271 @default.
- W2974549271 citedByCount "0" @default.
- W2974549271 crossrefType "posted-content" @default.
- W2974549271 hasAuthorship W2974549271A5015197407 @default.
- W2974549271 hasAuthorship W2974549271A5071575526 @default.
- W2974549271 hasConcept C114614502 @default.
- W2974549271 hasConcept C118615104 @default.
- W2974549271 hasConcept C134306372 @default.
- W2974549271 hasConcept C173734053 @default.
- W2974549271 hasConcept C17744445 @default.
- W2974549271 hasConcept C191795146 @default.
- W2974549271 hasConcept C199539241 @default.
- W2974549271 hasConcept C24424167 @default.
- W2974549271 hasConcept C33923547 @default.
- W2974549271 hasConcept C48659774 @default.
- W2974549271 hasConcept C9376300 @default.
- W2974549271 hasConceptScore W2974549271C114614502 @default.
- W2974549271 hasConceptScore W2974549271C118615104 @default.
- W2974549271 hasConceptScore W2974549271C134306372 @default.
- W2974549271 hasConceptScore W2974549271C173734053 @default.
- W2974549271 hasConceptScore W2974549271C17744445 @default.
- W2974549271 hasConceptScore W2974549271C191795146 @default.
- W2974549271 hasConceptScore W2974549271C199539241 @default.
- W2974549271 hasConceptScore W2974549271C24424167 @default.
- W2974549271 hasConceptScore W2974549271C33923547 @default.
- W2974549271 hasConceptScore W2974549271C48659774 @default.
- W2974549271 hasConceptScore W2974549271C9376300 @default.
- W2974549271 hasLocation W29745492711 @default.
- W2974549271 hasOpenAccess W2974549271 @default.
- W2974549271 hasPrimaryLocation W29745492711 @default.
- W2974549271 hasRelatedWork W1960549512 @default.
- W2974549271 hasRelatedWork W2008307482 @default.
- W2974549271 hasRelatedWork W2055742083 @default.
- W2974549271 hasRelatedWork W2079140096 @default.
- W2974549271 hasRelatedWork W2113644636 @default.
- W2974549271 hasRelatedWork W2135553523 @default.
- W2974549271 hasRelatedWork W2355512596 @default.
- W2974549271 hasRelatedWork W2461090448 @default.
- W2974549271 hasRelatedWork W2732777284 @default.
- W2974549271 hasRelatedWork W2921832688 @default.
- W2974549271 hasRelatedWork W2946864435 @default.
- W2974549271 hasRelatedWork W3005897571 @default.
- W2974549271 hasRelatedWork W3013883023 @default.
- W2974549271 hasRelatedWork W3033700027 @default.
- W2974549271 hasRelatedWork W3100758761 @default.
- W2974549271 hasRelatedWork W3119504466 @default.
- W2974549271 hasRelatedWork W3132424508 @default.
- W2974549271 hasRelatedWork W3164269764 @default.
- W2974549271 hasRelatedWork W3205560898 @default.
- W2974549271 hasRelatedWork W3213010424 @default.
- W2974549271 isParatext "false" @default.
- W2974549271 isRetracted "false" @default.
- W2974549271 magId "2974549271" @default.
- W2974549271 workType "article" @default.