Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974557215> ?p ?o ?g. }
- W2974557215 abstract "In this paper, we propose a novel approach for measuring the degree of similarity between categories of two pieces of Persian text, which were published as descriptions of two separate advertisements. We built an appropriate dataset for this work using a dataset which consists of advertisements posted on an e-commerce website. We generated a significant number of paired texts from this dataset and assigned each pair a score from 0 to 3, which demonstrates the degree of similarity between the domains of the pair. In this work, we represent words with word embedding vectors derived from word2vec. Then deep neural network models are used to represent texts. Eventually, we employ concatenation of absolute difference and bit-wise multiplication and a fully-connected neural network to produce a probability distribution vector for the score of the pairs. Through a supervised learning approach, we trained our model on a GPU, and our best model achieved an F1 score of 0.9865." @default.
- W2974557215 created "2019-09-26" @default.
- W2974557215 creator A5021528003 @default.
- W2974557215 creator A5033902274 @default.
- W2974557215 creator A5079078136 @default.
- W2974557215 date "2019-09-12" @default.
- W2974557215 modified "2023-09-27" @default.
- W2974557215 title "A Deep Learning-Based Approach for Measuring the Domain Similarity of Persian Texts." @default.
- W2974557215 cites W1526096287 @default.
- W2974557215 cites W1665214252 @default.
- W2974557215 cites W1753482797 @default.
- W2974557215 cites W2044565013 @default.
- W2974557215 cites W2064675550 @default.
- W2974557215 cites W2100495367 @default.
- W2974557215 cites W2110485445 @default.
- W2974557215 cites W2117130368 @default.
- W2974557215 cites W2126400076 @default.
- W2974557215 cites W2132339004 @default.
- W2974557215 cites W2133458109 @default.
- W2974557215 cites W2158899491 @default.
- W2974557215 cites W2171928131 @default.
- W2974557215 cites W2250539671 @default.
- W2974557215 cites W2251008987 @default.
- W2974557215 cites W2251189452 @default.
- W2974557215 cites W2251427843 @default.
- W2974557215 cites W2251622960 @default.
- W2974557215 cites W2265846598 @default.
- W2974557215 cites W2284936106 @default.
- W2974557215 cites W2462305634 @default.
- W2974557215 cites W2493916176 @default.
- W2974557215 cites W2587019100 @default.
- W2974557215 cites W2751762827 @default.
- W2974557215 cites W2894812750 @default.
- W2974557215 cites W2900818277 @default.
- W2974557215 cites W2949300694 @default.
- W2974557215 cites W2949541494 @default.
- W2974557215 cites W2950577311 @default.
- W2974557215 cites W2963918774 @default.
- W2974557215 hasPublicationYear "2019" @default.
- W2974557215 type Work @default.
- W2974557215 sameAs 2974557215 @default.
- W2974557215 citedByCount "0" @default.
- W2974557215 crossrefType "posted-content" @default.
- W2974557215 hasAuthorship W2974557215A5021528003 @default.
- W2974557215 hasAuthorship W2974557215A5033902274 @default.
- W2974557215 hasAuthorship W2974557215A5079078136 @default.
- W2974557215 hasConcept C103278499 @default.
- W2974557215 hasConcept C108583219 @default.
- W2974557215 hasConcept C115961682 @default.
- W2974557215 hasConcept C119857082 @default.
- W2974557215 hasConcept C154945302 @default.
- W2974557215 hasConcept C204321447 @default.
- W2974557215 hasConcept C2524010 @default.
- W2974557215 hasConcept C2776461190 @default.
- W2974557215 hasConcept C2777462759 @default.
- W2974557215 hasConcept C33923547 @default.
- W2974557215 hasConcept C41008148 @default.
- W2974557215 hasConcept C41608201 @default.
- W2974557215 hasConcept C50644808 @default.
- W2974557215 hasConcept C87619178 @default.
- W2974557215 hasConcept C90805587 @default.
- W2974557215 hasConcept C94375191 @default.
- W2974557215 hasConceptScore W2974557215C103278499 @default.
- W2974557215 hasConceptScore W2974557215C108583219 @default.
- W2974557215 hasConceptScore W2974557215C115961682 @default.
- W2974557215 hasConceptScore W2974557215C119857082 @default.
- W2974557215 hasConceptScore W2974557215C154945302 @default.
- W2974557215 hasConceptScore W2974557215C204321447 @default.
- W2974557215 hasConceptScore W2974557215C2524010 @default.
- W2974557215 hasConceptScore W2974557215C2776461190 @default.
- W2974557215 hasConceptScore W2974557215C2777462759 @default.
- W2974557215 hasConceptScore W2974557215C33923547 @default.
- W2974557215 hasConceptScore W2974557215C41008148 @default.
- W2974557215 hasConceptScore W2974557215C41608201 @default.
- W2974557215 hasConceptScore W2974557215C50644808 @default.
- W2974557215 hasConceptScore W2974557215C87619178 @default.
- W2974557215 hasConceptScore W2974557215C90805587 @default.
- W2974557215 hasConceptScore W2974557215C94375191 @default.
- W2974557215 hasLocation W29745572151 @default.
- W2974557215 hasOpenAccess W2974557215 @default.
- W2974557215 hasPrimaryLocation W29745572151 @default.
- W2974557215 hasRelatedWork W1493309008 @default.
- W2974557215 hasRelatedWork W2090708902 @default.
- W2974557215 hasRelatedWork W2107397692 @default.
- W2974557215 hasRelatedWork W2250314102 @default.
- W2974557215 hasRelatedWork W2251291469 @default.
- W2974557215 hasRelatedWork W2556233982 @default.
- W2974557215 hasRelatedWork W2739118107 @default.
- W2974557215 hasRelatedWork W2752127475 @default.
- W2974557215 hasRelatedWork W2783279235 @default.
- W2974557215 hasRelatedWork W2803805392 @default.
- W2974557215 hasRelatedWork W2891578174 @default.
- W2974557215 hasRelatedWork W2897075155 @default.
- W2974557215 hasRelatedWork W2964279163 @default.
- W2974557215 hasRelatedWork W2969453628 @default.
- W2974557215 hasRelatedWork W2990098834 @default.
- W2974557215 hasRelatedWork W3080661549 @default.
- W2974557215 hasRelatedWork W3183487064 @default.
- W2974557215 hasRelatedWork W3193313290 @default.
- W2974557215 hasRelatedWork W2961270449 @default.