Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974578770> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2974578770 endingPage "181" @default.
- W2974578770 startingPage "166" @default.
- W2974578770 abstract "Over the last decade, health communities (known as forums) have evolved into platforms where more and more users share their medical experiences, thereby seeking guidance and interacting with people of the community. The shared content, though informal and unstructured in nature, contains valuable medical and/or health related information and can be leveraged to produce structured suggestions to the common people. In this paper, at first we propose a stacked deep learning model for sentiment analysis from the medical forum data. The stacked model comprises of Convolutional Neural Network (CNN) followed by a Long Short Term Memory (LSTM) and then by another CNN. For a blog classified with positive sentiment, we retrieve the top-n similar posts. Thereafter, we develop a probabilistic model for suggesting the suitable treatments or procedures for a particular disease or health condition. We believe that integration of medical sentiment and suggestion would be beneficial to the users for finding the relevant contents regarding medications and medical conditions, without having to manually stroll through a large amount of unstructured contents." @default.
- W2974578770 created "2019-09-26" @default.
- W2974578770 creator A5018787065 @default.
- W2974578770 creator A5027694991 @default.
- W2974578770 creator A5085370631 @default.
- W2974578770 date "2023-01-01" @default.
- W2974578770 modified "2023-10-14" @default.
- W2974578770 title "Sentiment-Aware Recommendation System for Healthcare Using Social Media" @default.
- W2974578770 cites W1832693441 @default.
- W2974578770 cites W2064675550 @default.
- W2974578770 cites W2069870183 @default.
- W2974578770 cites W2102117374 @default.
- W2974578770 cites W2110646369 @default.
- W2974578770 cites W2178193414 @default.
- W2974578770 doi "https://doi.org/10.1007/978-3-031-24340-0_13" @default.
- W2974578770 hasPublicationYear "2023" @default.
- W2974578770 type Work @default.
- W2974578770 sameAs 2974578770 @default.
- W2974578770 citedByCount "1" @default.
- W2974578770 countsByYear W29745787702023 @default.
- W2974578770 crossrefType "book-chapter" @default.
- W2974578770 hasAuthorship W2974578770A5018787065 @default.
- W2974578770 hasAuthorship W2974578770A5027694991 @default.
- W2974578770 hasAuthorship W2974578770A5085370631 @default.
- W2974578770 hasBestOaLocation W29745787702 @default.
- W2974578770 hasConcept C108583219 @default.
- W2974578770 hasConcept C136764020 @default.
- W2974578770 hasConcept C154945302 @default.
- W2974578770 hasConcept C23123220 @default.
- W2974578770 hasConcept C2522767166 @default.
- W2974578770 hasConcept C3019150057 @default.
- W2974578770 hasConcept C41008148 @default.
- W2974578770 hasConcept C49937458 @default.
- W2974578770 hasConcept C518677369 @default.
- W2974578770 hasConcept C557471498 @default.
- W2974578770 hasConcept C66402592 @default.
- W2974578770 hasConcept C81363708 @default.
- W2974578770 hasConceptScore W2974578770C108583219 @default.
- W2974578770 hasConceptScore W2974578770C136764020 @default.
- W2974578770 hasConceptScore W2974578770C154945302 @default.
- W2974578770 hasConceptScore W2974578770C23123220 @default.
- W2974578770 hasConceptScore W2974578770C2522767166 @default.
- W2974578770 hasConceptScore W2974578770C3019150057 @default.
- W2974578770 hasConceptScore W2974578770C41008148 @default.
- W2974578770 hasConceptScore W2974578770C49937458 @default.
- W2974578770 hasConceptScore W2974578770C518677369 @default.
- W2974578770 hasConceptScore W2974578770C557471498 @default.
- W2974578770 hasConceptScore W2974578770C66402592 @default.
- W2974578770 hasConceptScore W2974578770C81363708 @default.
- W2974578770 hasLocation W29745787701 @default.
- W2974578770 hasLocation W29745787702 @default.
- W2974578770 hasOpenAccess W2974578770 @default.
- W2974578770 hasPrimaryLocation W29745787701 @default.
- W2974578770 hasRelatedWork W2731899572 @default.
- W2974578770 hasRelatedWork W2748952813 @default.
- W2974578770 hasRelatedWork W2999805992 @default.
- W2974578770 hasRelatedWork W3011074480 @default.
- W2974578770 hasRelatedWork W3116150086 @default.
- W2974578770 hasRelatedWork W3133861977 @default.
- W2974578770 hasRelatedWork W4200173597 @default.
- W2974578770 hasRelatedWork W4291897433 @default.
- W2974578770 hasRelatedWork W4312417841 @default.
- W2974578770 hasRelatedWork W4321369474 @default.
- W2974578770 isParatext "false" @default.
- W2974578770 isRetracted "false" @default.
- W2974578770 magId "2974578770" @default.
- W2974578770 workType "book-chapter" @default.