Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974598603> ?p ?o ?g. }
- W2974598603 endingPage "3470" @default.
- W2974598603 startingPage "3447" @default.
- W2974598603 abstract "Abstract. In this study we developed a neural network (NN) that can be used to retrieve cloud microphysical properties from multiangular and multispectral polarimetric remote sensing observations. This effort builds upon our previous work, which explored the sensitivity of neural network input, architecture, and other design requirements for this type of remote sensing problem. In particular this work introduces a framework for appropriately weighting total and polarized reflectances, which have vastly different magnitudes and measurement uncertainties. The NN is trained using an artificial training set and applied to research scanning polarimeter (RSP) data obtained during the ORACLES field campaign (ObseRvations of Aerosols above CLouds and their intEractionS). The polarimetric RSP observations are unique in that they observe the same cloud from a very large number of angles within a variety of spectral bands, resulting in a large dataset that can be explored rapidly with a NN approach. The usefulness of applying a NN to a dataset such as this one stems from the possibility of rapidly obtaining a retrieval that could be subsequently applied as a first guess for slower but more rigorous physical-based retrieval algorithms. This approach could be particularly advantageous for more complicated atmospheric retrievals – such as when an aerosol layer lies above clouds like in ORACLES. For RSP observations obtained during ORACLES 2016, comparisons between the NN and standard parametric polarimetric (PP) cloud retrieval give reasonable results for droplet effective radius (re: R=0.756, RMSE=1.74 µm) and cloud optical thickness (τ: R=0.950, RMSE=1.82). This level of statistical agreement is shown to be similar to comparisons between the two most well-established cloud retrievals, namely, the polarimetric and the bispectral total reflectance cloud retrievals. The NN retrievals from the ORACLES 2017 dataset result in retrievals of re (R=0.54, RMSE=4.77 µm) and τ (R=0.785, RMSE=5.61) that behave much more poorly. In particular we found that our NN retrieval approach does not perform well for thin (τ<3), inhomogeneous, or broken clouds. We also found that correction for above-cloud atmospheric absorption improved the NN retrievals moderately – but retrievals without this correction still behaved similarly to existing cloud retrievals with a slight systematic offset." @default.
- W2974598603 created "2019-09-26" @default.
- W2974598603 creator A5000060566 @default.
- W2974598603 creator A5006420776 @default.
- W2974598603 creator A5023386773 @default.
- W2974598603 creator A5042960422 @default.
- W2974598603 creator A5049051603 @default.
- W2974598603 creator A5056146579 @default.
- W2974598603 creator A5069685130 @default.
- W2974598603 creator A5081539115 @default.
- W2974598603 date "2020-06-29" @default.
- W2974598603 modified "2023-09-27" @default.
- W2974598603 title "Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm" @default.
- W2974598603 cites W124873535 @default.
- W2974598603 cites W1415643221 @default.
- W2974598603 cites W1482534101 @default.
- W2974598603 cites W1607091339 @default.
- W2974598603 cites W1837528964 @default.
- W2974598603 cites W1887924355 @default.
- W2974598603 cites W1963540173 @default.
- W2974598603 cites W1964594341 @default.
- W2974598603 cites W1964787845 @default.
- W2974598603 cites W1968151054 @default.
- W2974598603 cites W1968645589 @default.
- W2974598603 cites W1968687391 @default.
- W2974598603 cites W2002311377 @default.
- W2974598603 cites W2003022766 @default.
- W2974598603 cites W2003858595 @default.
- W2974598603 cites W2007250626 @default.
- W2974598603 cites W2015429212 @default.
- W2974598603 cites W2016974941 @default.
- W2974598603 cites W2022375582 @default.
- W2974598603 cites W2026633643 @default.
- W2974598603 cites W2027970101 @default.
- W2974598603 cites W2039058180 @default.
- W2974598603 cites W2040840142 @default.
- W2974598603 cites W2042112467 @default.
- W2974598603 cites W2052723305 @default.
- W2974598603 cites W2060983810 @default.
- W2974598603 cites W2068436198 @default.
- W2974598603 cites W2074164047 @default.
- W2974598603 cites W2081764451 @default.
- W2974598603 cites W2083340840 @default.
- W2974598603 cites W2094601661 @default.
- W2974598603 cites W2097573583 @default.
- W2974598603 cites W2105611131 @default.
- W2974598603 cites W2115109453 @default.
- W2974598603 cites W2122492728 @default.
- W2974598603 cites W2123544007 @default.
- W2974598603 cites W2129260110 @default.
- W2974598603 cites W2134635422 @default.
- W2974598603 cites W2144606373 @default.
- W2974598603 cites W2147800946 @default.
- W2974598603 cites W2160840673 @default.
- W2974598603 cites W2167501865 @default.
- W2974598603 cites W2173852084 @default.
- W2974598603 cites W2263928587 @default.
- W2974598603 cites W2274309914 @default.
- W2974598603 cites W2310596803 @default.
- W2974598603 cites W2337146793 @default.
- W2974598603 cites W2341482102 @default.
- W2974598603 cites W2514942542 @default.
- W2974598603 cites W2540743583 @default.
- W2974598603 cites W2585861988 @default.
- W2974598603 cites W2732696286 @default.
- W2974598603 cites W2791080637 @default.
- W2974598603 cites W2791275898 @default.
- W2974598603 cites W2794375955 @default.
- W2974598603 cites W2795104139 @default.
- W2974598603 cites W2811299197 @default.
- W2974598603 cites W2884761458 @default.
- W2974598603 cites W2892063113 @default.
- W2974598603 cites W2898869634 @default.
- W2974598603 cites W2908674619 @default.
- W2974598603 cites W2916639251 @default.
- W2974598603 cites W2920921998 @default.
- W2974598603 cites W2941819511 @default.
- W2974598603 cites W2943738598 @default.
- W2974598603 cites W4211083409 @default.
- W2974598603 cites W4238404964 @default.
- W2974598603 doi "https://doi.org/10.5194/amt-13-3447-2020" @default.
- W2974598603 hasPublicationYear "2020" @default.
- W2974598603 type Work @default.
- W2974598603 sameAs 2974598603 @default.
- W2974598603 citedByCount "5" @default.
- W2974598603 countsByYear W29745986032021 @default.
- W2974598603 countsByYear W29745986032022 @default.
- W2974598603 crossrefType "journal-article" @default.
- W2974598603 hasAuthorship W2974598603A5000060566 @default.
- W2974598603 hasAuthorship W2974598603A5006420776 @default.
- W2974598603 hasAuthorship W2974598603A5023386773 @default.
- W2974598603 hasAuthorship W2974598603A5042960422 @default.
- W2974598603 hasAuthorship W2974598603A5049051603 @default.
- W2974598603 hasAuthorship W2974598603A5056146579 @default.
- W2974598603 hasAuthorship W2974598603A5069685130 @default.
- W2974598603 hasAuthorship W2974598603A5081539115 @default.
- W2974598603 hasBestOaLocation W29745986031 @default.
- W2974598603 hasConcept C105795698 @default.