Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974749141> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2974749141 abstract "Diabetic Retinopathy is a human eye disease that causes damage to the eye's retina and may ultimately result in complete blindness. Early detection of diabetic retinopathy is needed to avoid complete blindness. Physical tests, such as visual acuity test, dilation of pupils, optical consistency tomography, is used to detect diabetic retinopathy. However, it is costly in terms of time and might affect the patients. In these consequences, this paper detects the presence of Diabetic Retinopathy in the human eye using a machine learning algorithm. The proposed method applies classification algorithms on several features (e.g., optical disk diameter, lesion-specific (microaneurysms, exudates) or presence of hemorrhages) of an existing Diabetic Retinopathy dataset. Then the features were extracted and used for the final decision making to predict the presence of diabetic retinopathy. The proposed system used Decision Tree, Logistic Regression. Support Vector Machine for the prediction. The proposed method achieved 88% accurate results which is much better than the existing works. Moreover, the proposed method achieves a better score in precision and recall which are 97% and 92%, respectively compared to the existing result 72% and 63%, i.e., more the 25% in each category on average which proves the enormousness of the proposed method." @default.
- W2974749141 created "2019-09-26" @default.
- W2974749141 creator A5007376417 @default.
- W2974749141 creator A5044430394 @default.
- W2974749141 creator A5056285389 @default.
- W2974749141 creator A5075152320 @default.
- W2974749141 creator A5075264599 @default.
- W2974749141 date "2019-06-01" @default.
- W2974749141 modified "2023-10-16" @default.
- W2974749141 title "An Improved Approach for Detection of Diabetic Retinopathy Using Feature Importance and Machine Learning Algorithms" @default.
- W2974749141 cites W2057396944 @default.
- W2974749141 cites W2091058823 @default.
- W2974749141 cites W2113006896 @default.
- W2974749141 cites W2157682860 @default.
- W2974749141 cites W2326162948 @default.
- W2974749141 cites W2501861162 @default.
- W2974749141 cites W2534419511 @default.
- W2974749141 cites W2910021230 @default.
- W2974749141 cites W4249618749 @default.
- W2974749141 doi "https://doi.org/10.1109/icscc.2019.8843676" @default.
- W2974749141 hasPublicationYear "2019" @default.
- W2974749141 type Work @default.
- W2974749141 sameAs 2974749141 @default.
- W2974749141 citedByCount "14" @default.
- W2974749141 countsByYear W29747491412020 @default.
- W2974749141 countsByYear W29747491412021 @default.
- W2974749141 countsByYear W29747491412022 @default.
- W2974749141 countsByYear W29747491412023 @default.
- W2974749141 crossrefType "proceedings-article" @default.
- W2974749141 hasAuthorship W2974749141A5007376417 @default.
- W2974749141 hasAuthorship W2974749141A5044430394 @default.
- W2974749141 hasAuthorship W2974749141A5056285389 @default.
- W2974749141 hasAuthorship W2974749141A5075152320 @default.
- W2974749141 hasAuthorship W2974749141A5075264599 @default.
- W2974749141 hasConcept C11413529 @default.
- W2974749141 hasConcept C119767625 @default.
- W2974749141 hasConcept C119857082 @default.
- W2974749141 hasConcept C12267149 @default.
- W2974749141 hasConcept C134018914 @default.
- W2974749141 hasConcept C151956035 @default.
- W2974749141 hasConcept C153180895 @default.
- W2974749141 hasConcept C154945302 @default.
- W2974749141 hasConcept C2778313320 @default.
- W2974749141 hasConcept C2779829184 @default.
- W2974749141 hasConcept C2780929884 @default.
- W2974749141 hasConcept C41008148 @default.
- W2974749141 hasConcept C555293320 @default.
- W2974749141 hasConcept C71924100 @default.
- W2974749141 hasConcept C84525736 @default.
- W2974749141 hasConceptScore W2974749141C11413529 @default.
- W2974749141 hasConceptScore W2974749141C119767625 @default.
- W2974749141 hasConceptScore W2974749141C119857082 @default.
- W2974749141 hasConceptScore W2974749141C12267149 @default.
- W2974749141 hasConceptScore W2974749141C134018914 @default.
- W2974749141 hasConceptScore W2974749141C151956035 @default.
- W2974749141 hasConceptScore W2974749141C153180895 @default.
- W2974749141 hasConceptScore W2974749141C154945302 @default.
- W2974749141 hasConceptScore W2974749141C2778313320 @default.
- W2974749141 hasConceptScore W2974749141C2779829184 @default.
- W2974749141 hasConceptScore W2974749141C2780929884 @default.
- W2974749141 hasConceptScore W2974749141C41008148 @default.
- W2974749141 hasConceptScore W2974749141C555293320 @default.
- W2974749141 hasConceptScore W2974749141C71924100 @default.
- W2974749141 hasConceptScore W2974749141C84525736 @default.
- W2974749141 hasLocation W29747491411 @default.
- W2974749141 hasOpenAccess W2974749141 @default.
- W2974749141 hasPrimaryLocation W29747491411 @default.
- W2974749141 hasRelatedWork W2386576987 @default.
- W2974749141 hasRelatedWork W2523522787 @default.
- W2974749141 hasRelatedWork W2616133256 @default.
- W2974749141 hasRelatedWork W2898850272 @default.
- W2974749141 hasRelatedWork W3109133244 @default.
- W2974749141 hasRelatedWork W4316658362 @default.
- W2974749141 hasRelatedWork W4320801467 @default.
- W2974749141 hasRelatedWork W4321636153 @default.
- W2974749141 hasRelatedWork W4383535405 @default.
- W2974749141 hasRelatedWork W82784959 @default.
- W2974749141 isParatext "false" @default.
- W2974749141 isRetracted "false" @default.
- W2974749141 magId "2974749141" @default.
- W2974749141 workType "article" @default.