Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974831052> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2974831052 abstract "A new procedure to construct predictive models in supervised learning problems by paying attention to the clustering structure of the input data is introduced. We are interested in situations where the input data consists of more than one unknown cluster, and where there exist different underlying models on these clusters. Thus, instead of constructing a single predictive model on the whole dataset, we propose to use a K-means clustering algorithm with different options of Bregman divergences, to recover the clustering structure of the input data. Then one dedicated predictive model is fit per cluster. For each divergence, we construct a simple local predictor on each observed cluster. We obtain one estimator, the collection of the K simple local predictors, per divergence, and we propose to combine them in a smart way based on a consensus idea. Several versions of consensual aggregation in both classification and regression problems are considered. A comparison of the performances of all constructed estimators on different simulated and real data assesses the excellent performance of our method. In a large variety of prediction problems, the consensual aggregation procedure outperforms all the other models." @default.
- W2974831052 created "2019-09-26" @default.
- W2974831052 creator A5023523529 @default.
- W2974831052 creator A5040654232 @default.
- W2974831052 creator A5046610403 @default.
- W2974831052 date "2019-09-16" @default.
- W2974831052 modified "2023-09-26" @default.
- W2974831052 title "Consensual aggregation of clusters based on Bregman divergences to improve predictive models" @default.
- W2974831052 cites W1484867920 @default.
- W2974831052 cites W1567180517 @default.
- W2974831052 cites W1570093865 @default.
- W2974831052 cites W1777308623 @default.
- W2974831052 cites W2011430131 @default.
- W2974831052 cites W2033468335 @default.
- W2974831052 cites W2055032487 @default.
- W2974831052 cites W2079561525 @default.
- W2974831052 cites W2096765209 @default.
- W2974831052 cites W2097645701 @default.
- W2974831052 cites W2112818627 @default.
- W2974831052 cites W2130700086 @default.
- W2974831052 cites W2150593711 @default.
- W2974831052 cites W2621635773 @default.
- W2974831052 cites W2914369697 @default.
- W2974831052 cites W2963979365 @default.
- W2974831052 cites W566360169 @default.
- W2974831052 hasPublicationYear "2019" @default.
- W2974831052 type Work @default.
- W2974831052 sameAs 2974831052 @default.
- W2974831052 citedByCount "0" @default.
- W2974831052 crossrefType "posted-content" @default.
- W2974831052 hasAuthorship W2974831052A5023523529 @default.
- W2974831052 hasAuthorship W2974831052A5040654232 @default.
- W2974831052 hasAuthorship W2974831052A5046610403 @default.
- W2974831052 hasBestOaLocation W29748310521 @default.
- W2974831052 hasConcept C149782125 @default.
- W2974831052 hasConcept C33923547 @default.
- W2974831052 hasConcept C41008148 @default.
- W2974831052 hasConceptScore W2974831052C149782125 @default.
- W2974831052 hasConceptScore W2974831052C33923547 @default.
- W2974831052 hasConceptScore W2974831052C41008148 @default.
- W2974831052 hasLocation W29748310521 @default.
- W2974831052 hasLocation W29748310522 @default.
- W2974831052 hasOpenAccess W2974831052 @default.
- W2974831052 hasPrimaryLocation W29748310521 @default.
- W2974831052 hasRelatedWork W1974891317 @default.
- W2974831052 hasRelatedWork W1979597421 @default.
- W2974831052 hasRelatedWork W2007980826 @default.
- W2974831052 hasRelatedWork W2061531152 @default.
- W2974831052 hasRelatedWork W2069964982 @default.
- W2974831052 hasRelatedWork W2748952813 @default.
- W2974831052 hasRelatedWork W2899084033 @default.
- W2974831052 hasRelatedWork W3002753104 @default.
- W2974831052 hasRelatedWork W4225152035 @default.
- W2974831052 hasRelatedWork W4245490552 @default.
- W2974831052 isParatext "false" @default.
- W2974831052 isRetracted "false" @default.
- W2974831052 magId "2974831052" @default.
- W2974831052 workType "article" @default.