Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974873485> ?p ?o ?g. }
- W2974873485 endingPage "248" @default.
- W2974873485 startingPage "207" @default.
- W2974873485 abstract "High-dimensional data, where the number of features or covariates can even be larger than the number of independent samples, are ubiquitous and are encountered on a regular basis by statistical scientists both in academia and in industry. A majority of the classical research in statistics dealt with the settings where there is a small number of covariates. Due to the modern advancements in data storage and computational power, the high-dimensional data revolution has significantly occupied mainstream statistical research. In gene expression datasets, for instance, it is not uncommon to encounter datasets with observations on at most a few hundred independent samples (subjects) and with information on tens or hundreds of thousands of genes per each sample. An important and common question that arises quickly is—“which of the available covariates are relevant to the outcome of interest?” This concerns the problem of variable selection (and more generally model selection) in statistics and data science. This chapter will provide an overview of some of the most well-known model selection methods along with some of the more recent methods. While frequentist methods will be discussed, Bayesian approaches will be given a more elaborate treatment. The frequentist framework for model selection is primarily based on penalization, whereas the Bayesian framework relies on prior distributions for inducing shrinkage and sparsity. The chapter treats the Bayesian framework in the light of objective and empirical Bayesian viewpoints as the priors in the high-dimensional setting are typically not completely based subjective prior beliefs. An important practical aspect of high-dimensional model selection methods is computational scalability which will also be discussed." @default.
- W2974873485 created "2019-09-26" @default.
- W2974873485 creator A5075319535 @default.
- W2974873485 date "2020-01-01" @default.
- W2974873485 modified "2023-10-12" @default.
- W2974873485 title "Bayesian model selection for high-dimensional data" @default.
- W2974873485 cites W1483883706 @default.
- W2974873485 cites W1516111018 @default.
- W2974873485 cites W1543012556 @default.
- W2974873485 cites W1926534335 @default.
- W2974873485 cites W1965125844 @default.
- W2974873485 cites W1965169081 @default.
- W2974873485 cites W1968261351 @default.
- W2974873485 cites W1969415786 @default.
- W2974873485 cites W1973575289 @default.
- W2974873485 cites W1975839276 @default.
- W2974873485 cites W1976575807 @default.
- W2974873485 cites W1977944427 @default.
- W2974873485 cites W1981299323 @default.
- W2974873485 cites W1982652137 @default.
- W2974873485 cites W1986783130 @default.
- W2974873485 cites W1988930747 @default.
- W2974873485 cites W1990885553 @default.
- W2974873485 cites W1998073888 @default.
- W2974873485 cites W1999974018 @default.
- W2974873485 cites W2007069447 @default.
- W2974873485 cites W2011471859 @default.
- W2974873485 cites W2014360396 @default.
- W2974873485 cites W2016119924 @default.
- W2974873485 cites W2020389170 @default.
- W2974873485 cites W2020925091 @default.
- W2974873485 cites W2023744006 @default.
- W2974873485 cites W2026357499 @default.
- W2974873485 cites W2028239954 @default.
- W2974873485 cites W2031913033 @default.
- W2974873485 cites W2054434031 @default.
- W2974873485 cites W2055025635 @default.
- W2974873485 cites W2056324615 @default.
- W2974873485 cites W2062532221 @default.
- W2974873485 cites W2074282020 @default.
- W2974873485 cites W2074682976 @default.
- W2974873485 cites W2084089095 @default.
- W2974873485 cites W2084871407 @default.
- W2974873485 cites W2089398629 @default.
- W2974873485 cites W2096904991 @default.
- W2974873485 cites W2099170797 @default.
- W2974873485 cites W2114169935 @default.
- W2974873485 cites W2116581043 @default.
- W2974873485 cites W2122825543 @default.
- W2974873485 cites W2138769430 @default.
- W2974873485 cites W2147426468 @default.
- W2974873485 cites W2147848557 @default.
- W2974873485 cites W2150149003 @default.
- W2974873485 cites W2152933101 @default.
- W2974873485 cites W2154560360 @default.
- W2974873485 cites W2162888823 @default.
- W2974873485 cites W2168175751 @default.
- W2974873485 cites W2224996002 @default.
- W2974873485 cites W2566065221 @default.
- W2974873485 cites W2762763764 @default.
- W2974873485 cites W2788365376 @default.
- W2974873485 cites W2806706576 @default.
- W2974873485 cites W2962978766 @default.
- W2974873485 cites W2963047405 @default.
- W2974873485 cites W2963058055 @default.
- W2974873485 cites W2963094815 @default.
- W2974873485 cites W2963937909 @default.
- W2974873485 cites W2964302067 @default.
- W2974873485 cites W2964346891 @default.
- W2974873485 cites W2980069674 @default.
- W2974873485 cites W3099817059 @default.
- W2974873485 cites W3100253669 @default.
- W2974873485 cites W3100858558 @default.
- W2974873485 cites W3101380508 @default.
- W2974873485 cites W3102055739 @default.
- W2974873485 cites W3102812845 @default.
- W2974873485 cites W3102998992 @default.
- W2974873485 cites W3103221895 @default.
- W2974873485 cites W3103712593 @default.
- W2974873485 cites W3104393726 @default.
- W2974873485 cites W3105622673 @default.
- W2974873485 cites W3106108064 @default.
- W2974873485 cites W4211177544 @default.
- W2974873485 cites W4241653265 @default.
- W2974873485 doi "https://doi.org/10.1016/bs.host.2019.08.001" @default.
- W2974873485 hasPublicationYear "2020" @default.
- W2974873485 type Work @default.
- W2974873485 sameAs 2974873485 @default.
- W2974873485 citedByCount "9" @default.
- W2974873485 countsByYear W29748734852021 @default.
- W2974873485 countsByYear W29748734852022 @default.
- W2974873485 countsByYear W29748734852023 @default.
- W2974873485 crossrefType "book-chapter" @default.
- W2974873485 hasAuthorship W2974873485A5075319535 @default.
- W2974873485 hasConcept C101112237 @default.
- W2974873485 hasConcept C105795698 @default.
- W2974873485 hasConcept C107673813 @default.
- W2974873485 hasConcept C119043178 @default.