Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974878082> ?p ?o ?g. }
- W2974878082 endingPage "29759" @default.
- W2974878082 startingPage "29747" @default.
- W2974878082 abstract "Lots of research findings have indicated that miRNAs (microRNAs) are involved in many important biological processes; their mutations and disorders are closely related to diseases, therefore, determining the associations between human diseases and miRNAs is key to understand pathogenic mechanisms. Existing biological experimental methods for identifying miRNA-disease associations are usually expensive and time consuming. Therefore, the development of efficient and reliable computational methods for identifying disease-related miRNAs has become an important topic in the field of biological research in recent years. In this study, we developed a novel miRNA-disease association prediction model using a Laplacian score of the graphs and space projection federated method (LSGSP). This integrates experimentally validated miRNA-disease associations, disease semantic similarity scores, miRNA functional scores, and miRNA family information to build a new disease similarity network and miRNA similarity network, and then obtains the global similarities of these networks through calculating the Laplacian score of the graphs, based on which the miRNA-disease weighted network can be constructed through combination with the miRNA-disease Boolean network. Finally, the miRNA-disease score was obtained via projecting the miRNA space and disease space onto the miRNA-disease weighted network. Compared with several other state-of-the-art methods, using leave-one-out cross validation (LOOCV) to evaluate the accuracy of LSGSP with respect to a benchmark dataset, prediction dataset and compare dataset, LSGSP showed excellent predictive performance with high AUC values of 0.9221, 0.9745 and 0.9194, respectively. In addition, for prostate neoplasms and lung neoplasms, the consistencies between the top 50 predicted miRNAs (obtained from LSGSP) and the results (confirmed from the updated HMDD, miR2Disease, and dbDEMC databases) reached 96% and 100%, respectively. Similarly, for isolated diseases (diseases not associated with any miRNAs), the consistencies between the top 50 predicted miRNAs (obtained from LSGSP) and the results (confirmed from the above-mentioned three databases) reached 98% and 100%, respectively. These results further indicate that LSGSP can effectively predict potential associations between miRNAs and diseases." @default.
- W2974878082 created "2019-09-26" @default.
- W2974878082 creator A5012718640 @default.
- W2974878082 creator A5032769690 @default.
- W2974878082 creator A5042276980 @default.
- W2974878082 creator A5044544424 @default.
- W2974878082 date "2019-01-01" @default.
- W2974878082 modified "2023-10-16" @default.
- W2974878082 title "LSGSP: a novel miRNA–disease association prediction model using a Laplacian score of the graphs and space projection federated method" @default.
- W2974878082 cites W1436642346 @default.
- W2974878082 cites W1567311406 @default.
- W2974878082 cites W1577392641 @default.
- W2974878082 cites W1588047563 @default.
- W2974878082 cites W1636566365 @default.
- W2974878082 cites W1766979935 @default.
- W2974878082 cites W1967087625 @default.
- W2974878082 cites W1985997519 @default.
- W2974878082 cites W1989454102 @default.
- W2974878082 cites W2001476170 @default.
- W2974878082 cites W2008289103 @default.
- W2974878082 cites W2017426710 @default.
- W2974878082 cites W2022732522 @default.
- W2974878082 cites W2047967134 @default.
- W2974878082 cites W2077440507 @default.
- W2974878082 cites W2084023127 @default.
- W2974878082 cites W2090335107 @default.
- W2974878082 cites W2098318517 @default.
- W2974878082 cites W2100932663 @default.
- W2974878082 cites W2105679485 @default.
- W2974878082 cites W2118814218 @default.
- W2974878082 cites W2119687825 @default.
- W2974878082 cites W2121457306 @default.
- W2974878082 cites W2122211092 @default.
- W2974878082 cites W2126619650 @default.
- W2974878082 cites W2129158737 @default.
- W2974878082 cites W2131456432 @default.
- W2974878082 cites W2135836598 @default.
- W2974878082 cites W2136369230 @default.
- W2974878082 cites W2141222510 @default.
- W2974878082 cites W2145361279 @default.
- W2974878082 cites W2147733663 @default.
- W2974878082 cites W2151519667 @default.
- W2974878082 cites W2158135353 @default.
- W2974878082 cites W2195094016 @default.
- W2974878082 cites W2256657354 @default.
- W2974878082 cites W2258129851 @default.
- W2974878082 cites W2264494318 @default.
- W2974878082 cites W2280957887 @default.
- W2974878082 cites W2300551961 @default.
- W2974878082 cites W2344103844 @default.
- W2974878082 cites W2394883162 @default.
- W2974878082 cites W2410390867 @default.
- W2974878082 cites W2416873003 @default.
- W2974878082 cites W2468879907 @default.
- W2974878082 cites W2469107041 @default.
- W2974878082 cites W2511620854 @default.
- W2974878082 cites W2537429907 @default.
- W2974878082 cites W2557745205 @default.
- W2974878082 cites W2558554264 @default.
- W2974878082 cites W2565317011 @default.
- W2974878082 cites W2584926544 @default.
- W2974878082 cites W2589632744 @default.
- W2974878082 cites W2590492570 @default.
- W2974878082 cites W2601934706 @default.
- W2974878082 cites W2607159126 @default.
- W2974878082 cites W2609812301 @default.
- W2974878082 cites W2668092031 @default.
- W2974878082 cites W2735278091 @default.
- W2974878082 cites W2750900465 @default.
- W2974878082 cites W2752943586 @default.
- W2974878082 cites W2755096075 @default.
- W2974878082 cites W2763613803 @default.
- W2974878082 cites W2765907185 @default.
- W2974878082 cites W2765950793 @default.
- W2974878082 cites W2766935102 @default.
- W2974878082 cites W2771545712 @default.
- W2974878082 cites W2780777007 @default.
- W2974878082 cites W2781702232 @default.
- W2974878082 cites W2790013415 @default.
- W2974878082 cites W2793029544 @default.
- W2974878082 cites W2793359445 @default.
- W2974878082 cites W2795540478 @default.
- W2974878082 cites W2799307902 @default.
- W2974878082 cites W2802763884 @default.
- W2974878082 cites W2805950880 @default.
- W2974878082 cites W2809363952 @default.
- W2974878082 cites W2888358121 @default.
- W2974878082 cites W2890728516 @default.
- W2974878082 cites W2892900716 @default.
- W2974878082 cites W2899482650 @default.
- W2974878082 cites W2900870219 @default.
- W2974878082 cites W2903730942 @default.
- W2974878082 cites W2909927673 @default.
- W2974878082 cites W2913303505 @default.
- W2974878082 cites W2923922207 @default.
- W2974878082 cites W2942082579 @default.
- W2974878082 cites W955243042 @default.
- W2974878082 doi "https://doi.org/10.1039/c9ra05554a" @default.