Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974996423> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2974996423 abstract "A convolutional neural network with outstanding performance in computer vision can be used to construct an encoding model that simulates the process of human visual information processing. However, training goal of the network may have impacted the performance of encoding model. Most neural networks used to establish encoding models in the past were performed image classification task, the task of which is single. While in the process of human's visual perception, multiple tasks are performed simultaneously. Thus, the existing encoding model does not well satisfy the diversity and complexity of the human visual mechanism. In this paper, we first established a feature extraction model based on Fully Convolutional Network (FCN) and Visual Geometry Group (VGG) with similar network structure but different training goal, and employed Regularize Orthogonal Matching Pursuit (ROMP) to establish the response model, which can predict the stimuli-evoked responses measured by functional magnetic resonance imaging (fMRI). The results revealed that the convolutional neural networks trained by different visual tasks had significant difference in the performance of visual encoding with almost the same network structure. The VGG-based encoding model can achieve a higher performance in most voxels of ROIs. We concluded that classification task in computer vision can better fit the visual mechanism of human compared to visual segmentation task." @default.
- W2974996423 created "2019-10-03" @default.
- W2974996423 creator A5026053703 @default.
- W2974996423 creator A5040610372 @default.
- W2974996423 creator A5071180608 @default.
- W2974996423 creator A5089425067 @default.
- W2974996423 creator A5091588180 @default.
- W2974996423 date "2019-01-01" @default.
- W2974996423 modified "2023-09-27" @default.
- W2974996423 title "Different Goal-driven CNNs Affect Performance of Visual Encoding Models based on Deep Learning" @default.
- W2974996423 cites W1715013381 @default.
- W2974996423 cites W2022508996 @default.
- W2974996423 cites W2022912258 @default.
- W2974996423 cites W2034634335 @default.
- W2974996423 cites W2063951486 @default.
- W2974996423 cites W2076063813 @default.
- W2974996423 cites W2095978736 @default.
- W2974996423 cites W2099100030 @default.
- W2974996423 cites W2144421443 @default.
- W2974996423 cites W2201865119 @default.
- W2974996423 cites W2274405424 @default.
- W2974996423 cites W2395611524 @default.
- W2974996423 cites W2607037079 @default.
- W2974996423 cites W2618530766 @default.
- W2974996423 cites W2805765883 @default.
- W2974996423 cites W2952237357 @default.
- W2974996423 doi "https://doi.org/10.1145/3354031.3354045" @default.
- W2974996423 hasPublicationYear "2019" @default.
- W2974996423 type Work @default.
- W2974996423 sameAs 2974996423 @default.
- W2974996423 citedByCount "0" @default.
- W2974996423 crossrefType "proceedings-article" @default.
- W2974996423 hasAuthorship W2974996423A5026053703 @default.
- W2974996423 hasAuthorship W2974996423A5040610372 @default.
- W2974996423 hasAuthorship W2974996423A5071180608 @default.
- W2974996423 hasAuthorship W2974996423A5089425067 @default.
- W2974996423 hasAuthorship W2974996423A5091588180 @default.
- W2974996423 hasConcept C111919701 @default.
- W2974996423 hasConcept C115961682 @default.
- W2974996423 hasConcept C125411270 @default.
- W2974996423 hasConcept C138885662 @default.
- W2974996423 hasConcept C153180895 @default.
- W2974996423 hasConcept C154945302 @default.
- W2974996423 hasConcept C160086991 @default.
- W2974996423 hasConcept C162324750 @default.
- W2974996423 hasConcept C169760540 @default.
- W2974996423 hasConcept C178253425 @default.
- W2974996423 hasConcept C187736073 @default.
- W2974996423 hasConcept C26760741 @default.
- W2974996423 hasConcept C2776401178 @default.
- W2974996423 hasConcept C2779226451 @default.
- W2974996423 hasConcept C2780451532 @default.
- W2974996423 hasConcept C31972630 @default.
- W2974996423 hasConcept C41008148 @default.
- W2974996423 hasConcept C41895202 @default.
- W2974996423 hasConcept C50644808 @default.
- W2974996423 hasConcept C81363708 @default.
- W2974996423 hasConcept C86803240 @default.
- W2974996423 hasConcept C98045186 @default.
- W2974996423 hasConceptScore W2974996423C111919701 @default.
- W2974996423 hasConceptScore W2974996423C115961682 @default.
- W2974996423 hasConceptScore W2974996423C125411270 @default.
- W2974996423 hasConceptScore W2974996423C138885662 @default.
- W2974996423 hasConceptScore W2974996423C153180895 @default.
- W2974996423 hasConceptScore W2974996423C154945302 @default.
- W2974996423 hasConceptScore W2974996423C160086991 @default.
- W2974996423 hasConceptScore W2974996423C162324750 @default.
- W2974996423 hasConceptScore W2974996423C169760540 @default.
- W2974996423 hasConceptScore W2974996423C178253425 @default.
- W2974996423 hasConceptScore W2974996423C187736073 @default.
- W2974996423 hasConceptScore W2974996423C26760741 @default.
- W2974996423 hasConceptScore W2974996423C2776401178 @default.
- W2974996423 hasConceptScore W2974996423C2779226451 @default.
- W2974996423 hasConceptScore W2974996423C2780451532 @default.
- W2974996423 hasConceptScore W2974996423C31972630 @default.
- W2974996423 hasConceptScore W2974996423C41008148 @default.
- W2974996423 hasConceptScore W2974996423C41895202 @default.
- W2974996423 hasConceptScore W2974996423C50644808 @default.
- W2974996423 hasConceptScore W2974996423C81363708 @default.
- W2974996423 hasConceptScore W2974996423C86803240 @default.
- W2974996423 hasConceptScore W2974996423C98045186 @default.
- W2974996423 hasLocation W29749964231 @default.
- W2974996423 hasOpenAccess W2974996423 @default.
- W2974996423 hasPrimaryLocation W29749964231 @default.
- W2974996423 hasRelatedWork W1987574626 @default.
- W2974996423 hasRelatedWork W2588120994 @default.
- W2974996423 hasRelatedWork W2760085659 @default.
- W2974996423 hasRelatedWork W2765889516 @default.
- W2974996423 hasRelatedWork W2799291336 @default.
- W2974996423 hasRelatedWork W2886673456 @default.
- W2974996423 hasRelatedWork W2974996423 @default.
- W2974996423 hasRelatedWork W3154474343 @default.
- W2974996423 hasRelatedWork W4225145356 @default.
- W2974996423 hasRelatedWork W4284989669 @default.
- W2974996423 isParatext "false" @default.
- W2974996423 isRetracted "false" @default.
- W2974996423 magId "2974996423" @default.
- W2974996423 workType "article" @default.