Matches in SemOpenAlex for { <https://semopenalex.org/work/W2974999331> ?p ?o ?g. }
- W2974999331 endingPage "2656" @default.
- W2974999331 startingPage "2644" @default.
- W2974999331 abstract "Abstract Background Advanced machine learning methods combined with large sets of health screening data provide opportunities for diagnostic value in human and veterinary medicine. Hypothesis/Objectives To derive a model to predict the risk of cats developing chronic kidney disease (CKD) using data from electronic health records (EHRs) collected during routine veterinary practice. Animals A total of 106 251 cats that attended Banfield Pet Hospitals between January 1, 1995, and December 31, 2017. Methods Longitudinal EHRs from Banfield Pet Hospitals were extracted and randomly split into 2 parts. The first 67% of the data were used to build a prediction model, which included feature selection and identification of the optimal neural network type and architecture. The remaining unseen EHRs were used to evaluate the model performance. Results The final model was a recurrent neural network (RNN) with 4 features (creatinine, blood urea nitrogen, urine specific gravity, and age). When predicting CKD near the point of diagnosis, the model displayed a sensitivity of 90.7% and a specificity of 98.9%. Model sensitivity decreased when predicting the risk of CKD with a longer horizon, having 63.0% sensitivity 1 year before diagnosis and 44.2% 2 years before diagnosis, but with specificity remaining around 99%. Conclusions and clinical importance The use of models based on machine learning can support veterinary decision making by improving early identification of CKD." @default.
- W2974999331 created "2019-10-03" @default.
- W2974999331 creator A5004351739 @default.
- W2974999331 creator A5004608249 @default.
- W2974999331 creator A5018414141 @default.
- W2974999331 creator A5026677216 @default.
- W2974999331 creator A5029844979 @default.
- W2974999331 creator A5052118358 @default.
- W2974999331 creator A5056069054 @default.
- W2974999331 creator A5062854708 @default.
- W2974999331 creator A5090199645 @default.
- W2974999331 date "2019-09-26" @default.
- W2974999331 modified "2023-10-17" @default.
- W2974999331 title "Predicting early risk of chronic kidney disease in cats using routine clinical laboratory tests and machine learning" @default.
- W2974999331 cites W1993167760 @default.
- W2974999331 cites W1999112251 @default.
- W2974999331 cites W2000658385 @default.
- W2974999331 cites W2019229162 @default.
- W2974999331 cites W2020774229 @default.
- W2974999331 cites W2036138660 @default.
- W2974999331 cites W2038132783 @default.
- W2974999331 cites W2061550100 @default.
- W2974999331 cites W2064186732 @default.
- W2974999331 cites W2071884995 @default.
- W2974999331 cites W2078242043 @default.
- W2974999331 cites W2078982390 @default.
- W2974999331 cites W2094088089 @default.
- W2974999331 cites W2144994235 @default.
- W2974999331 cites W2146767951 @default.
- W2974999331 cites W2152265696 @default.
- W2974999331 cites W2273657379 @default.
- W2974999331 cites W2282887873 @default.
- W2974999331 cites W2322968835 @default.
- W2974999331 cites W2343843201 @default.
- W2974999331 cites W2896609900 @default.
- W2974999331 cites W4251919176 @default.
- W2974999331 doi "https://doi.org/10.1111/jvim.15623" @default.
- W2974999331 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6872623" @default.
- W2974999331 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31557361" @default.
- W2974999331 hasPublicationYear "2019" @default.
- W2974999331 type Work @default.
- W2974999331 sameAs 2974999331 @default.
- W2974999331 citedByCount "23" @default.
- W2974999331 countsByYear W29749993312019 @default.
- W2974999331 countsByYear W29749993312020 @default.
- W2974999331 countsByYear W29749993312021 @default.
- W2974999331 countsByYear W29749993312022 @default.
- W2974999331 countsByYear W29749993312023 @default.
- W2974999331 crossrefType "journal-article" @default.
- W2974999331 hasAuthorship W2974999331A5004351739 @default.
- W2974999331 hasAuthorship W2974999331A5004608249 @default.
- W2974999331 hasAuthorship W2974999331A5018414141 @default.
- W2974999331 hasAuthorship W2974999331A5026677216 @default.
- W2974999331 hasAuthorship W2974999331A5029844979 @default.
- W2974999331 hasAuthorship W2974999331A5052118358 @default.
- W2974999331 hasAuthorship W2974999331A5056069054 @default.
- W2974999331 hasAuthorship W2974999331A5062854708 @default.
- W2974999331 hasAuthorship W2974999331A5090199645 @default.
- W2974999331 hasBestOaLocation W29749993311 @default.
- W2974999331 hasConcept C119857082 @default.
- W2974999331 hasConcept C126322002 @default.
- W2974999331 hasConcept C154945302 @default.
- W2974999331 hasConcept C177713679 @default.
- W2974999331 hasConcept C2778653478 @default.
- W2974999331 hasConcept C2779134260 @default.
- W2974999331 hasConcept C2779904517 @default.
- W2974999331 hasConcept C2780306776 @default.
- W2974999331 hasConcept C41008148 @default.
- W2974999331 hasConcept C50644808 @default.
- W2974999331 hasConcept C71924100 @default.
- W2974999331 hasConceptScore W2974999331C119857082 @default.
- W2974999331 hasConceptScore W2974999331C126322002 @default.
- W2974999331 hasConceptScore W2974999331C154945302 @default.
- W2974999331 hasConceptScore W2974999331C177713679 @default.
- W2974999331 hasConceptScore W2974999331C2778653478 @default.
- W2974999331 hasConceptScore W2974999331C2779134260 @default.
- W2974999331 hasConceptScore W2974999331C2779904517 @default.
- W2974999331 hasConceptScore W2974999331C2780306776 @default.
- W2974999331 hasConceptScore W2974999331C41008148 @default.
- W2974999331 hasConceptScore W2974999331C50644808 @default.
- W2974999331 hasConceptScore W2974999331C71924100 @default.
- W2974999331 hasFunder F4320309633 @default.
- W2974999331 hasIssue "6" @default.
- W2974999331 hasLocation W29749993311 @default.
- W2974999331 hasLocation W29749993312 @default.
- W2974999331 hasLocation W29749993313 @default.
- W2974999331 hasLocation W29749993314 @default.
- W2974999331 hasLocation W29749993315 @default.
- W2974999331 hasOpenAccess W2974999331 @default.
- W2974999331 hasPrimaryLocation W29749993311 @default.
- W2974999331 hasRelatedWork W1588968920 @default.
- W2974999331 hasRelatedWork W2471594942 @default.
- W2974999331 hasRelatedWork W2480621998 @default.
- W2974999331 hasRelatedWork W2761660841 @default.
- W2974999331 hasRelatedWork W2961085424 @default.
- W2974999331 hasRelatedWork W3003571257 @default.
- W2974999331 hasRelatedWork W3193826795 @default.
- W2974999331 hasRelatedWork W4306674287 @default.