Matches in SemOpenAlex for { <https://semopenalex.org/work/W2975065512> ?p ?o ?g. }
- W2975065512 abstract "Accurately forecasting the future movements of surrounding vehicles is essential for safe and efficient operations of autonomous driving cars. This task is difficult because a vehicle's moving trajectory is greatly determined by its driver's intention, which is often hard to estimate. By leveraging attention mechanisms along with long short-term memory (LSTM) networks, this work learns the relation between a driver's intention and the vehicle's changing positions relative to road infrastructures, and uses it to guide the prediction. Different from other state-of-the-art solutions, our work treats the on-road lanes as non-Euclidean structures, unfolds the vehicle's moving history to form a spatio-temporal graph, and uses methods from Graph Neural Networks to solve the problem. Not only is our approach a pioneering attempt in using non-Euclidean methods to process static environmental features around a predicted object, our model also outperforms other state-of-the-art models in several metrics. The practicability and interpretability analysis of the model shows great potential for large-scale deployment in various autonomous driving systems in addition to our own." @default.
- W2975065512 created "2019-10-03" @default.
- W2975065512 creator A5022644877 @default.
- W2975065512 creator A5039290144 @default.
- W2975065512 creator A5047709059 @default.
- W2975065512 creator A5049913056 @default.
- W2975065512 creator A5056388838 @default.
- W2975065512 creator A5077136364 @default.
- W2975065512 creator A5078198844 @default.
- W2975065512 date "2019-09-29" @default.
- W2975065512 modified "2023-09-24" @default.
- W2975065512 title "Lane Attention: Predicting Vehicles' Moving Trajectories by Learning Their Attention over Lanes" @default.
- W2975065512 cites W2012849708 @default.
- W2975065512 cites W2048093873 @default.
- W2975065512 cites W2054161738 @default.
- W2975065512 cites W2061432680 @default.
- W2975065512 cites W2064675550 @default.
- W2975065512 cites W2102113734 @default.
- W2975065512 cites W2105934661 @default.
- W2975065512 cites W2116341502 @default.
- W2975065512 cites W2133133694 @default.
- W2975065512 cites W2153323685 @default.
- W2975065512 cites W2157331557 @default.
- W2975065512 cites W2167052694 @default.
- W2975065512 cites W2424778531 @default.
- W2975065512 cites W2552391307 @default.
- W2975065512 cites W2606780347 @default.
- W2975065512 cites W2617510024 @default.
- W2975065512 cites W2624431344 @default.
- W2975065512 cites W2766836212 @default.
- W2975065512 cites W2791814097 @default.
- W2975065512 cites W2801667201 @default.
- W2975065512 cites W2805516822 @default.
- W2975065512 cites W2886483202 @default.
- W2975065512 cites W2886617718 @default.
- W2975065512 cites W2955189650 @default.
- W2975065512 cites W2962767366 @default.
- W2975065512 cites W2963001155 @default.
- W2975065512 cites W2963165299 @default.
- W2975065512 cites W2963207497 @default.
- W2975065512 cites W2963309363 @default.
- W2975065512 cites W2963353290 @default.
- W2975065512 cites W2963403868 @default.
- W2975065512 cites W2963406064 @default.
- W2975065512 cites W2963906196 @default.
- W2975065512 cites W2963914175 @default.
- W2975065512 cites W2963945905 @default.
- W2975065512 cites W2964080601 @default.
- W2975065512 cites W2964308564 @default.
- W2975065512 cites W2983397630 @default.
- W2975065512 doi "https://doi.org/10.48550/arxiv.1909.13377" @default.
- W2975065512 hasPublicationYear "2019" @default.
- W2975065512 type Work @default.
- W2975065512 sameAs 2975065512 @default.
- W2975065512 citedByCount "3" @default.
- W2975065512 countsByYear W29750655122020 @default.
- W2975065512 countsByYear W29750655122021 @default.
- W2975065512 crossrefType "posted-content" @default.
- W2975065512 hasAuthorship W2975065512A5022644877 @default.
- W2975065512 hasAuthorship W2975065512A5039290144 @default.
- W2975065512 hasAuthorship W2975065512A5047709059 @default.
- W2975065512 hasAuthorship W2975065512A5049913056 @default.
- W2975065512 hasAuthorship W2975065512A5056388838 @default.
- W2975065512 hasAuthorship W2975065512A5077136364 @default.
- W2975065512 hasAuthorship W2975065512A5078198844 @default.
- W2975065512 hasBestOaLocation W29750655121 @default.
- W2975065512 hasConcept C105339364 @default.
- W2975065512 hasConcept C108583219 @default.
- W2975065512 hasConcept C111919701 @default.
- W2975065512 hasConcept C11413529 @default.
- W2975065512 hasConcept C119857082 @default.
- W2975065512 hasConcept C121332964 @default.
- W2975065512 hasConcept C127413603 @default.
- W2975065512 hasConcept C1276947 @default.
- W2975065512 hasConcept C129782007 @default.
- W2975065512 hasConcept C132525143 @default.
- W2975065512 hasConcept C13662910 @default.
- W2975065512 hasConcept C154945302 @default.
- W2975065512 hasConcept C201995342 @default.
- W2975065512 hasConcept C2524010 @default.
- W2975065512 hasConcept C2780451532 @default.
- W2975065512 hasConcept C2781067378 @default.
- W2975065512 hasConcept C33923547 @default.
- W2975065512 hasConcept C41008148 @default.
- W2975065512 hasConcept C48103436 @default.
- W2975065512 hasConcept C50644808 @default.
- W2975065512 hasConcept C80444323 @default.
- W2975065512 hasConcept C98045186 @default.
- W2975065512 hasConceptScore W2975065512C105339364 @default.
- W2975065512 hasConceptScore W2975065512C108583219 @default.
- W2975065512 hasConceptScore W2975065512C111919701 @default.
- W2975065512 hasConceptScore W2975065512C11413529 @default.
- W2975065512 hasConceptScore W2975065512C119857082 @default.
- W2975065512 hasConceptScore W2975065512C121332964 @default.
- W2975065512 hasConceptScore W2975065512C127413603 @default.
- W2975065512 hasConceptScore W2975065512C1276947 @default.
- W2975065512 hasConceptScore W2975065512C129782007 @default.
- W2975065512 hasConceptScore W2975065512C132525143 @default.
- W2975065512 hasConceptScore W2975065512C13662910 @default.
- W2975065512 hasConceptScore W2975065512C154945302 @default.