Matches in SemOpenAlex for { <https://semopenalex.org/work/W2975220389> ?p ?o ?g. }
- W2975220389 endingPage "74" @default.
- W2975220389 startingPage "74" @default.
- W2975220389 abstract "This study aimed to compare two techniques of business knowledge extraction for the identification of insights related to the improvement of digital marketing strategies on a sample of 15,731 tweets. The sample was extracted from user generated content (UGC) from Twitter using two methods based on knowledge extraction techniques for business. In Method 1, an algorithm to detect communities in complex networks was applied; this algorithm, in which we applied data visualization techniques for complex networks analysis, used the modularity of nodes to discover topics. In Method 2, a three-phase process was developed for knowledge extraction that included the application of a latent Dirichlet allocation (LDA) model, a sentiment analysis (SA) that works with machine learning, and a data text mining (DTM) analysis technique. Finally, we compared the results of each of the two techniques to see whether or not the results yielded by these two methods regarding the analysis of companies’ digital marketing strategies were mutually complementary." @default.
- W2975220389 created "2019-10-03" @default.
- W2975220389 creator A5014945387 @default.
- W2975220389 creator A5036899043 @default.
- W2975220389 creator A5043682947 @default.
- W2975220389 date "2019-12-01" @default.
- W2975220389 modified "2023-09-29" @default.
- W2975220389 title "Comparing Data-Driven Methods for Extracting Knowledge from User Generated Content" @default.
- W2975220389 cites W1545924273 @default.
- W2975220389 cites W1968014109 @default.
- W2975220389 cites W2001961665 @default.
- W2975220389 cites W2006945534 @default.
- W2975220389 cites W2008209917 @default.
- W2975220389 cites W2019880039 @default.
- W2975220389 cites W2047333734 @default.
- W2975220389 cites W2063250203 @default.
- W2975220389 cites W2071162947 @default.
- W2975220389 cites W2085893569 @default.
- W2975220389 cites W2087071811 @default.
- W2975220389 cites W2098126593 @default.
- W2975220389 cites W2130486630 @default.
- W2975220389 cites W2131681506 @default.
- W2975220389 cites W2132832208 @default.
- W2975220389 cites W2142827986 @default.
- W2975220389 cites W2416617210 @default.
- W2975220389 cites W2526737020 @default.
- W2975220389 cites W2588933851 @default.
- W2975220389 cites W2591973781 @default.
- W2975220389 cites W2703960189 @default.
- W2975220389 cites W2769582432 @default.
- W2975220389 cites W2885897164 @default.
- W2975220389 cites W2888055603 @default.
- W2975220389 cites W2894572059 @default.
- W2975220389 cites W2897201726 @default.
- W2975220389 cites W2900641211 @default.
- W2975220389 cites W2902534974 @default.
- W2975220389 cites W2921211403 @default.
- W2975220389 cites W2936967793 @default.
- W2975220389 cites W2946191173 @default.
- W2975220389 cites W2948013797 @default.
- W2975220389 cites W2974285349 @default.
- W2975220389 cites W3101714434 @default.
- W2975220389 cites W3105053883 @default.
- W2975220389 cites W3125004846 @default.
- W2975220389 doi "https://doi.org/10.3390/joitmc5040074" @default.
- W2975220389 hasPublicationYear "2019" @default.
- W2975220389 type Work @default.
- W2975220389 sameAs 2975220389 @default.
- W2975220389 citedByCount "12" @default.
- W2975220389 countsByYear W29752203892019 @default.
- W2975220389 countsByYear W29752203892020 @default.
- W2975220389 countsByYear W29752203892021 @default.
- W2975220389 countsByYear W29752203892022 @default.
- W2975220389 countsByYear W29752203892023 @default.
- W2975220389 crossrefType "journal-article" @default.
- W2975220389 hasAuthorship W2975220389A5014945387 @default.
- W2975220389 hasAuthorship W2975220389A5036899043 @default.
- W2975220389 hasAuthorship W2975220389A5043682947 @default.
- W2975220389 hasBestOaLocation W29752203891 @default.
- W2975220389 hasConcept C111919701 @default.
- W2975220389 hasConcept C116834253 @default.
- W2975220389 hasConcept C119857082 @default.
- W2975220389 hasConcept C120567893 @default.
- W2975220389 hasConcept C124101348 @default.
- W2975220389 hasConcept C171686336 @default.
- W2975220389 hasConcept C185592680 @default.
- W2975220389 hasConcept C198531522 @default.
- W2975220389 hasConcept C23123220 @default.
- W2975220389 hasConcept C2522767166 @default.
- W2975220389 hasConcept C36464697 @default.
- W2975220389 hasConcept C41008148 @default.
- W2975220389 hasConcept C43617362 @default.
- W2975220389 hasConcept C500882744 @default.
- W2975220389 hasConcept C59822182 @default.
- W2975220389 hasConcept C86803240 @default.
- W2975220389 hasConcept C98045186 @default.
- W2975220389 hasConceptScore W2975220389C111919701 @default.
- W2975220389 hasConceptScore W2975220389C116834253 @default.
- W2975220389 hasConceptScore W2975220389C119857082 @default.
- W2975220389 hasConceptScore W2975220389C120567893 @default.
- W2975220389 hasConceptScore W2975220389C124101348 @default.
- W2975220389 hasConceptScore W2975220389C171686336 @default.
- W2975220389 hasConceptScore W2975220389C185592680 @default.
- W2975220389 hasConceptScore W2975220389C198531522 @default.
- W2975220389 hasConceptScore W2975220389C23123220 @default.
- W2975220389 hasConceptScore W2975220389C2522767166 @default.
- W2975220389 hasConceptScore W2975220389C36464697 @default.
- W2975220389 hasConceptScore W2975220389C41008148 @default.
- W2975220389 hasConceptScore W2975220389C43617362 @default.
- W2975220389 hasConceptScore W2975220389C500882744 @default.
- W2975220389 hasConceptScore W2975220389C59822182 @default.
- W2975220389 hasConceptScore W2975220389C86803240 @default.
- W2975220389 hasConceptScore W2975220389C98045186 @default.
- W2975220389 hasIssue "4" @default.
- W2975220389 hasLocation W29752203891 @default.
- W2975220389 hasLocation W29752203892 @default.
- W2975220389 hasOpenAccess W2975220389 @default.
- W2975220389 hasPrimaryLocation W29752203891 @default.