Matches in SemOpenAlex for { <https://semopenalex.org/work/W2975256987> ?p ?o ?g. }
- W2975256987 endingPage "690" @default.
- W2975256987 startingPage "673" @default.
- W2975256987 abstract "Commercial thinning (CT) is an important tool that meets a diverse set of forest management objectives, including the generation of intermediate revenue, promotion of regeneration tree growth, and the modification of vertical and horizontal fuel structure for wildfire mitigation. Using a set of 653 fixed radius plots and a coincident LiDAR acquisition, we compared three different classification methods to predict CT eligibility for Douglas-fir (Pseudotsuga menziesii) stands in southwestern Oregon. We assessed logistic regression (LOG), random forests (RF), XGBoost (XGB) to classify areas eligible for CT operations based on three structural attributes, volume (VOL), basal area (BA) and Curtis’ Relative Density index (CRD). We also assessed their predictive performance and reliability via cross-validation at different sample sizes. We used the area under the receiver operating characteristic curve (AUC) as our primary performance measure. Estimated AUCs were 0.86, 0.77 and 0.68 for XGB, RF and LOG, respectively. We observed that classifier performance stabilized between sample sizes of 200 and 300 plots, which suggests that the development of a CT eligibility classifier is appropriate for operational applications of the method with similar sample sizes and large area attributes." @default.
- W2975256987 created "2019-10-03" @default.
- W2975256987 creator A5005398269 @default.
- W2975256987 creator A5036318366 @default.
- W2975256987 creator A5051706329 @default.
- W2975256987 creator A5079537636 @default.
- W2975256987 date "2019-09-03" @default.
- W2975256987 modified "2023-10-18" @default.
- W2975256987 title "Analysis of Classification Methods for Identifying Stands for Commercial Thinning Using LiDAR" @default.
- W2975256987 cites W1156515331 @default.
- W2975256987 cites W138818472 @default.
- W2975256987 cites W1450870106 @default.
- W2975256987 cites W1684243805 @default.
- W2975256987 cites W1840338487 @default.
- W2975256987 cites W192083524 @default.
- W2975256987 cites W1968285335 @default.
- W2975256987 cites W1996263757 @default.
- W2975256987 cites W1997732436 @default.
- W2975256987 cites W2006286431 @default.
- W2975256987 cites W2011762871 @default.
- W2975256987 cites W2019126302 @default.
- W2975256987 cites W2023480280 @default.
- W2975256987 cites W2039021671 @default.
- W2975256987 cites W2048950501 @default.
- W2975256987 cites W2052031343 @default.
- W2975256987 cites W2059217921 @default.
- W2975256987 cites W2072243128 @default.
- W2975256987 cites W2085770564 @default.
- W2975256987 cites W2092126505 @default.
- W2975256987 cites W2097631297 @default.
- W2975256987 cites W2109850379 @default.
- W2975256987 cites W2110840436 @default.
- W2975256987 cites W2128741824 @default.
- W2975256987 cites W2135046866 @default.
- W2975256987 cites W2136708407 @default.
- W2975256987 cites W2148143831 @default.
- W2975256987 cites W2155596820 @default.
- W2975256987 cites W2156616099 @default.
- W2975256987 cites W2161182098 @default.
- W2975256987 cites W2163795496 @default.
- W2975256987 cites W2174882701 @default.
- W2975256987 cites W2180779707 @default.
- W2975256987 cites W2289181195 @default.
- W2975256987 cites W2293460577 @default.
- W2975256987 cites W2316476786 @default.
- W2975256987 cites W2337203014 @default.
- W2975256987 cites W2419060286 @default.
- W2975256987 cites W2489398676 @default.
- W2975256987 cites W2523940231 @default.
- W2975256987 cites W2533557648 @default.
- W2975256987 cites W2556421733 @default.
- W2975256987 cites W2586297576 @default.
- W2975256987 cites W2614112366 @default.
- W2975256987 cites W2778737247 @default.
- W2975256987 cites W2787894218 @default.
- W2975256987 cites W2789266805 @default.
- W2975256987 cites W2791827521 @default.
- W2975256987 cites W2797487804 @default.
- W2975256987 cites W2809494081 @default.
- W2975256987 cites W2896040051 @default.
- W2975256987 cites W2911964244 @default.
- W2975256987 cites W2916884393 @default.
- W2975256987 cites W2944750195 @default.
- W2975256987 cites W3102476541 @default.
- W2975256987 cites W4294214797 @default.
- W2975256987 cites W60686164 @default.
- W2975256987 doi "https://doi.org/10.1080/07038992.2019.1670051" @default.
- W2975256987 hasPublicationYear "2019" @default.
- W2975256987 type Work @default.
- W2975256987 sameAs 2975256987 @default.
- W2975256987 citedByCount "2" @default.
- W2975256987 countsByYear W29752569872021 @default.
- W2975256987 countsByYear W29752569872023 @default.
- W2975256987 crossrefType "journal-article" @default.
- W2975256987 hasAuthorship W2975256987A5005398269 @default.
- W2975256987 hasAuthorship W2975256987A5036318366 @default.
- W2975256987 hasAuthorship W2975256987A5051706329 @default.
- W2975256987 hasAuthorship W2975256987A5079537636 @default.
- W2975256987 hasConcept C105795698 @default.
- W2975256987 hasConcept C147103442 @default.
- W2975256987 hasConcept C154945302 @default.
- W2975256987 hasConcept C169258074 @default.
- W2975256987 hasConcept C185592680 @default.
- W2975256987 hasConcept C198531522 @default.
- W2975256987 hasConcept C205649164 @default.
- W2975256987 hasConcept C2781353100 @default.
- W2975256987 hasConcept C28631016 @default.
- W2975256987 hasConcept C33923547 @default.
- W2975256987 hasConcept C39432304 @default.
- W2975256987 hasConcept C41008148 @default.
- W2975256987 hasConcept C43617362 @default.
- W2975256987 hasConcept C51399673 @default.
- W2975256987 hasConcept C58471807 @default.
- W2975256987 hasConcept C62649853 @default.
- W2975256987 hasConcept C84525736 @default.
- W2975256987 hasConcept C91354502 @default.
- W2975256987 hasConcept C95623464 @default.
- W2975256987 hasConcept C97137747 @default.