Matches in SemOpenAlex for { <https://semopenalex.org/work/W2975362805> ?p ?o ?g. }
- W2975362805 abstract "Motivated by Lang-Vojta's conjecture, we show that the set of dominant rational self-maps of an algebraic variety over a number field with only finitely many rational points in any given number field is finite by combining Amerik's theorem for dynamical systems of infinite order with properties of Prokhorov-Shramov's notion of quasi-minimal models. We also prove a similar result in the geometric setting by using again Amerik's theorem and Prokhorov-Shramov's notion of quasi-minimal model, but also Weil's regularization theorem for birational self-maps and properties of dynamical degrees. Furthermore, in the geometric setting, we obtain an analogue of Kobayashi-Ochiai's finiteness result for varieties of general type, and thereby generalize Noguchi's theorem (formerly Lang's conjecture)." @default.
- W2975362805 created "2019-10-03" @default.
- W2975362805 creator A5006564500 @default.
- W2975362805 creator A5086776194 @default.
- W2975362805 date "2019-09-26" @default.
- W2975362805 modified "2023-10-01" @default.
- W2975362805 title "Finiteness properties of pseudo-hyperbolic varieties" @default.
- W2975362805 cites W12886765 @default.
- W2975362805 cites W1486898453 @default.
- W2975362805 cites W1534028610 @default.
- W2975362805 cites W1547079612 @default.
- W2975362805 cites W1548337223 @default.
- W2975362805 cites W1550772389 @default.
- W2975362805 cites W1558046128 @default.
- W2975362805 cites W1580842374 @default.
- W2975362805 cites W1640935790 @default.
- W2975362805 cites W1666866116 @default.
- W2975362805 cites W1834771592 @default.
- W2975362805 cites W1837420467 @default.
- W2975362805 cites W184910111 @default.
- W2975362805 cites W186977544 @default.
- W2975362805 cites W1887272061 @default.
- W2975362805 cites W1908064275 @default.
- W2975362805 cites W1964240915 @default.
- W2975362805 cites W1965897887 @default.
- W2975362805 cites W1970327823 @default.
- W2975362805 cites W1972701135 @default.
- W2975362805 cites W1976827540 @default.
- W2975362805 cites W1978331323 @default.
- W2975362805 cites W1989130557 @default.
- W2975362805 cites W1995816890 @default.
- W2975362805 cites W2003715279 @default.
- W2975362805 cites W2003860770 @default.
- W2975362805 cites W200413410 @default.
- W2975362805 cites W2008083838 @default.
- W2975362805 cites W2009305256 @default.
- W2975362805 cites W2010749569 @default.
- W2975362805 cites W2010962448 @default.
- W2975362805 cites W2014055754 @default.
- W2975362805 cites W2017532192 @default.
- W2975362805 cites W2027836990 @default.
- W2975362805 cites W2033738357 @default.
- W2975362805 cites W2037122296 @default.
- W2975362805 cites W2038383731 @default.
- W2975362805 cites W2044940852 @default.
- W2975362805 cites W2063223236 @default.
- W2975362805 cites W2081692393 @default.
- W2975362805 cites W2090080993 @default.
- W2975362805 cites W2108994444 @default.
- W2975362805 cites W2135758595 @default.
- W2975362805 cites W2139172858 @default.
- W2975362805 cites W2142177650 @default.
- W2975362805 cites W2167289089 @default.
- W2975362805 cites W2170757394 @default.
- W2975362805 cites W2279791872 @default.
- W2975362805 cites W2326433155 @default.
- W2975362805 cites W2334022568 @default.
- W2975362805 cites W2531879069 @default.
- W2975362805 cites W2585480799 @default.
- W2975362805 cites W2616967985 @default.
- W2975362805 cites W266246404 @default.
- W2975362805 cites W2726751866 @default.
- W2975362805 cites W2856095876 @default.
- W2975362805 cites W2883028679 @default.
- W2975362805 cites W2889069090 @default.
- W2975362805 cites W2890999243 @default.
- W2975362805 cites W2893639632 @default.
- W2975362805 cites W2962966576 @default.
- W2975362805 cites W2963177516 @default.
- W2975362805 cites W2963611630 @default.
- W2975362805 cites W2963646467 @default.
- W2975362805 cites W2963840482 @default.
- W2975362805 cites W2963841727 @default.
- W2975362805 cites W2965725474 @default.
- W2975362805 cites W3007006478 @default.
- W2975362805 cites W3007658893 @default.
- W2975362805 cites W3024658937 @default.
- W2975362805 cites W3031949053 @default.
- W2975362805 cites W3098873566 @default.
- W2975362805 cites W3098889577 @default.
- W2975362805 cites W3101342511 @default.
- W2975362805 cites W3101601873 @default.
- W2975362805 cites W3102370213 @default.
- W2975362805 cites W3104880594 @default.
- W2975362805 cites W3123263349 @default.
- W2975362805 cites W3126273506 @default.
- W2975362805 cites W3173798625 @default.
- W2975362805 cites W41518938 @default.
- W2975362805 cites W81405111 @default.
- W2975362805 doi "https://doi.org/10.48550/arxiv.1909.12187" @default.
- W2975362805 hasPublicationYear "2019" @default.
- W2975362805 type Work @default.
- W2975362805 sameAs 2975362805 @default.
- W2975362805 citedByCount "2" @default.
- W2975362805 countsByYear W29753628052020 @default.
- W2975362805 crossrefType "posted-content" @default.
- W2975362805 hasAuthorship W2975362805A5006564500 @default.
- W2975362805 hasAuthorship W2975362805A5086776194 @default.
- W2975362805 hasBestOaLocation W29753628051 @default.
- W2975362805 hasConcept C118615104 @default.