Matches in SemOpenAlex for { <https://semopenalex.org/work/W2975432854> ?p ?o ?g. }
- W2975432854 abstract "Synthesizing three-dimensional objects from single or multiple two-dimensional views has been a challenging task. To combat this, several techniques involving Convolutional Neural Networks (CNNs), Long Short-Term Memory Networks (LSTMs), and Recurrent Neural Network (RNN) have been proposed. Since its advent in 2014, there has been a tremendous amount of research done in the area of Generative Adversarial Networks (GANs). Among the various applications of GANs, image synthesis has shown great potential due to the power of two deep neural networks—generator and discriminator, trained in a competitive way, which are able to produce reasonably realistic images. Formulation of 3D-GANs—which are able to generate three-dimensional objects from multiple two-dimensional views with impressive accuracy—has emerged as a promising solution to the aforementioned issue. This paper provides a comprehensive analysis of deep learning methods used in generating three-dimensional objects, reviews the different models and frameworks for three-dimensional object generation, and discusses some evaluation metrics and future research direction in using GANs as an alternative for simultaneous localization and environment mapping as well as leveraging the power of GANs to revolutionize the field of education and medicine." @default.
- W2975432854 created "2019-10-03" @default.
- W2975432854 creator A5023243299 @default.
- W2975432854 creator A5029538559 @default.
- W2975432854 creator A5030249441 @default.
- W2975432854 creator A5066244061 @default.
- W2975432854 creator A5087306656 @default.
- W2975432854 creator A5090041953 @default.
- W2975432854 date "2019-09-25" @default.
- W2975432854 modified "2023-09-25" @default.
- W2975432854 title "Generative Adversarial Networks as an Advancement in 2D to 3D Reconstruction Techniques" @default.
- W2975432854 cites W1591870335 @default.
- W2975432854 cites W1864464506 @default.
- W2975432854 cites W1893912098 @default.
- W2975432854 cites W1991264156 @default.
- W2975432854 cites W2017814585 @default.
- W2975432854 cites W2021122545 @default.
- W2975432854 cites W2023056405 @default.
- W2975432854 cites W2037227137 @default.
- W2975432854 cites W2058961190 @default.
- W2975432854 cites W2064675550 @default.
- W2975432854 cites W2083163329 @default.
- W2975432854 cites W2117007522 @default.
- W2975432854 cites W2117539524 @default.
- W2975432854 cites W2124600577 @default.
- W2975432854 cites W2136922672 @default.
- W2975432854 cites W2211722331 @default.
- W2975432854 cites W2237250383 @default.
- W2975432854 cites W2257979135 @default.
- W2975432854 cites W2284800790 @default.
- W2975432854 cites W2342277278 @default.
- W2975432854 cites W2348664362 @default.
- W2975432854 cites W2495603374 @default.
- W2975432854 cites W2560722161 @default.
- W2975432854 cites W2566832195 @default.
- W2975432854 cites W2582734987 @default.
- W2975432854 cites W2598591334 @default.
- W2975432854 cites W2738620947 @default.
- W2975432854 cites W2748512037 @default.
- W2975432854 cites W2766448241 @default.
- W2975432854 cites W2775428617 @default.
- W2975432854 cites W2912990735 @default.
- W2975432854 cites W2962731536 @default.
- W2975432854 cites W2962988048 @default.
- W2975432854 cites W2963100452 @default.
- W2975432854 cites W2963782069 @default.
- W2975432854 cites W2963805706 @default.
- W2975432854 cites W2964014798 @default.
- W2975432854 cites W2964137676 @default.
- W2975432854 cites W2964339842 @default.
- W2975432854 cites W3106165820 @default.
- W2975432854 cites W4235921383 @default.
- W2975432854 doi "https://doi.org/10.1007/978-981-13-9364-8_25" @default.
- W2975432854 hasPublicationYear "2019" @default.
- W2975432854 type Work @default.
- W2975432854 sameAs 2975432854 @default.
- W2975432854 citedByCount "1" @default.
- W2975432854 countsByYear W29754328542020 @default.
- W2975432854 crossrefType "book-chapter" @default.
- W2975432854 hasAuthorship W2975432854A5023243299 @default.
- W2975432854 hasAuthorship W2975432854A5029538559 @default.
- W2975432854 hasAuthorship W2975432854A5030249441 @default.
- W2975432854 hasAuthorship W2975432854A5066244061 @default.
- W2975432854 hasAuthorship W2975432854A5087306656 @default.
- W2975432854 hasAuthorship W2975432854A5090041953 @default.
- W2975432854 hasConcept C108583219 @default.
- W2975432854 hasConcept C119857082 @default.
- W2975432854 hasConcept C121332964 @default.
- W2975432854 hasConcept C127413603 @default.
- W2975432854 hasConcept C153180895 @default.
- W2975432854 hasConcept C154945302 @default.
- W2975432854 hasConcept C163258240 @default.
- W2975432854 hasConcept C201995342 @default.
- W2975432854 hasConcept C202444582 @default.
- W2975432854 hasConcept C2779803651 @default.
- W2975432854 hasConcept C2780451532 @default.
- W2975432854 hasConcept C2780992000 @default.
- W2975432854 hasConcept C2781238097 @default.
- W2975432854 hasConcept C2988773926 @default.
- W2975432854 hasConcept C33923547 @default.
- W2975432854 hasConcept C37736160 @default.
- W2975432854 hasConcept C39890363 @default.
- W2975432854 hasConcept C41008148 @default.
- W2975432854 hasConcept C50644808 @default.
- W2975432854 hasConcept C62520636 @default.
- W2975432854 hasConcept C76155785 @default.
- W2975432854 hasConcept C81363708 @default.
- W2975432854 hasConcept C94915269 @default.
- W2975432854 hasConcept C9652623 @default.
- W2975432854 hasConceptScore W2975432854C108583219 @default.
- W2975432854 hasConceptScore W2975432854C119857082 @default.
- W2975432854 hasConceptScore W2975432854C121332964 @default.
- W2975432854 hasConceptScore W2975432854C127413603 @default.
- W2975432854 hasConceptScore W2975432854C153180895 @default.
- W2975432854 hasConceptScore W2975432854C154945302 @default.
- W2975432854 hasConceptScore W2975432854C163258240 @default.
- W2975432854 hasConceptScore W2975432854C201995342 @default.
- W2975432854 hasConceptScore W2975432854C202444582 @default.
- W2975432854 hasConceptScore W2975432854C2779803651 @default.
- W2975432854 hasConceptScore W2975432854C2780451532 @default.