Matches in SemOpenAlex for { <https://semopenalex.org/work/W2975461480> ?p ?o ?g. }
- W2975461480 endingPage "47" @default.
- W2975461480 startingPage "38" @default.
- W2975461480 abstract "It has been proved that Higee technology can intensify the processes involving the multiphase mass transfer, and be applied to the ozone-based advanced oxidation processes. Modeling and prediction of mass transfer coefficient are rare in this field. A modeling approach based on artificial neural network (ANN) was developed in this work to predict mass transfer coefficient of ozone absorption process in rotating packed bed (RPB). Serial experiments were conducted to obtain data for the establishment of ANN model, which was then employed to predict the overall mass transfer coefficient (KLa) using dimensionless quantities such as Reynolds number of gas and liquid, Froude number and Weber number, calculated in terms of the geometry of RPB and operating conditions. To optimize the model structure and performance, random grid search for hyperparameters was adopted in this work. The final model exhibits a prediction ability with R2 of 0.9896 and 0.9877, RMSE of 0.01801 and 0.03085, and MAE of 0.01265 and 0.02219 on the training set and the test set, respectively." @default.
- W2975461480 created "2019-10-03" @default.
- W2975461480 creator A5058380236 @default.
- W2975461480 creator A5071677003 @default.
- W2975461480 creator A5072298276 @default.
- W2975461480 creator A5081657807 @default.
- W2975461480 creator A5087289491 @default.
- W2975461480 date "2019-12-01" @default.
- W2975461480 modified "2023-10-18" @default.
- W2975461480 title "Artificial neural network modeling on the prediction of mass transfer coefficient for ozone absorption in RPB" @default.
- W2975461480 cites W1967134589 @default.
- W2975461480 cites W1969810074 @default.
- W2975461480 cites W2009362109 @default.
- W2975461480 cites W2030902061 @default.
- W2975461480 cites W2031652674 @default.
- W2975461480 cites W2032106555 @default.
- W2975461480 cites W2033433478 @default.
- W2975461480 cites W2037584653 @default.
- W2975461480 cites W2037993225 @default.
- W2975461480 cites W2040881789 @default.
- W2975461480 cites W2044606692 @default.
- W2975461480 cites W2047959503 @default.
- W2975461480 cites W2051033850 @default.
- W2975461480 cites W2053166282 @default.
- W2975461480 cites W2060642913 @default.
- W2975461480 cites W2062796577 @default.
- W2975461480 cites W2089506878 @default.
- W2975461480 cites W2120642383 @default.
- W2975461480 cites W2148991744 @default.
- W2975461480 cites W2150932600 @default.
- W2975461480 cites W2178894372 @default.
- W2975461480 cites W2208020852 @default.
- W2975461480 cites W2292044745 @default.
- W2975461480 cites W2335066399 @default.
- W2975461480 cites W2488574402 @default.
- W2975461480 cites W2511983156 @default.
- W2975461480 cites W2546838365 @default.
- W2975461480 cites W2592776868 @default.
- W2975461480 cites W2892822748 @default.
- W2975461480 cites W895475495 @default.
- W2975461480 doi "https://doi.org/10.1016/j.cherd.2019.09.027" @default.
- W2975461480 hasPublicationYear "2019" @default.
- W2975461480 type Work @default.
- W2975461480 sameAs 2975461480 @default.
- W2975461480 citedByCount "13" @default.
- W2975461480 countsByYear W29754614802021 @default.
- W2975461480 countsByYear W29754614802022 @default.
- W2975461480 countsByYear W29754614802023 @default.
- W2975461480 crossrefType "journal-article" @default.
- W2975461480 hasAuthorship W2975461480A5058380236 @default.
- W2975461480 hasAuthorship W2975461480A5071677003 @default.
- W2975461480 hasAuthorship W2975461480A5072298276 @default.
- W2975461480 hasAuthorship W2975461480A5081657807 @default.
- W2975461480 hasAuthorship W2975461480A5087289491 @default.
- W2975461480 hasConcept C101555633 @default.
- W2975461480 hasConcept C105795698 @default.
- W2975461480 hasConcept C11413529 @default.
- W2975461480 hasConcept C121332964 @default.
- W2975461480 hasConcept C125287762 @default.
- W2975461480 hasConcept C139945424 @default.
- W2975461480 hasConcept C153294291 @default.
- W2975461480 hasConcept C154945302 @default.
- W2975461480 hasConcept C159985019 @default.
- W2975461480 hasConcept C182748727 @default.
- W2975461480 hasConcept C18762648 @default.
- W2975461480 hasConcept C192562407 @default.
- W2975461480 hasConcept C196558001 @default.
- W2975461480 hasConcept C206835866 @default.
- W2975461480 hasConcept C24872484 @default.
- W2975461480 hasConcept C2777871205 @default.
- W2975461480 hasConcept C33923547 @default.
- W2975461480 hasConcept C41008148 @default.
- W2975461480 hasConcept C50644808 @default.
- W2975461480 hasConcept C51038369 @default.
- W2975461480 hasConcept C57879066 @default.
- W2975461480 hasConcept C8642999 @default.
- W2975461480 hasConcept C97355855 @default.
- W2975461480 hasConceptScore W2975461480C101555633 @default.
- W2975461480 hasConceptScore W2975461480C105795698 @default.
- W2975461480 hasConceptScore W2975461480C11413529 @default.
- W2975461480 hasConceptScore W2975461480C121332964 @default.
- W2975461480 hasConceptScore W2975461480C125287762 @default.
- W2975461480 hasConceptScore W2975461480C139945424 @default.
- W2975461480 hasConceptScore W2975461480C153294291 @default.
- W2975461480 hasConceptScore W2975461480C154945302 @default.
- W2975461480 hasConceptScore W2975461480C159985019 @default.
- W2975461480 hasConceptScore W2975461480C182748727 @default.
- W2975461480 hasConceptScore W2975461480C18762648 @default.
- W2975461480 hasConceptScore W2975461480C192562407 @default.
- W2975461480 hasConceptScore W2975461480C196558001 @default.
- W2975461480 hasConceptScore W2975461480C206835866 @default.
- W2975461480 hasConceptScore W2975461480C24872484 @default.
- W2975461480 hasConceptScore W2975461480C2777871205 @default.
- W2975461480 hasConceptScore W2975461480C33923547 @default.
- W2975461480 hasConceptScore W2975461480C41008148 @default.
- W2975461480 hasConceptScore W2975461480C50644808 @default.
- W2975461480 hasConceptScore W2975461480C51038369 @default.
- W2975461480 hasConceptScore W2975461480C57879066 @default.